DOI: 10.1002/chem.200600615

A Synthetic Breakthrough into an Unanticipated Stability Regime: A Series of Isolable Complexes in which C_6 , C_8 , C_{10} , C_{12} , C_{16} , C_{20} , C_{24} , and C_{28} Polyynediyl Chains Span Two Platinum Atoms

Qinglin Zheng,^[a] James C. Bohling,^[b] Thomas B. Peters,^[b] Anja C. Frisch,^[a] Frank Hampel,^[a] and J. A. Gladysz^{*[a]}

Abstract: The reaction of trans-[PtCl- $(p$ -tol) ${P(p$ -tol)₃ $_2$] (**PtCl**) and H(C= C ₂H (cat. CuI, HNEt₂) gives PtC₄H (82%), which can be cross-coupled with excess $HC = CSiEt_3$ (acetone, O₂, CuCl/TMEDA; Hay conditions) to yield **PtC₆Si** (77%). The addition of $nBu_4N^+F^-$ in wet acetone gives PtC_6H^- (84%), and further addition of $CISiMe₃$ (F⁻ scavenger) and excess $HC=CSiEt₃$ (Hay conditions) yields **PtC**₈Si (23%). Similar cross-coupling reactions of $P{tC_xH}$ (generated in situ for $x>6$) and excess $H(C=C)$, $SiEt_3$ give a) $x=4$, **PtC**₈Si (29%), **PtC**₁₂Si (30%), and **PtC**₁₆Si (1%); b) $x=6$, **PtC**₁₀Si (59%) and **PtC**₁₄Si (7%); c) $x=8$, **PtC₁₂Si** (42%); and d) $x=10$, **PtC**₁₄Si (20%). Hay homocoupling reactions of $PtC₄H$, $PtC₆H$, $PtC₈H$, and PtC₁₀H give PtC₈Pt, PtC₁₂Pt, PtC₁₆Pt, and PtC₂₀Pt (88–70%), but PtC₁₂H decomposes too rapidly. However, when **PtC₁₂Si** and **PtC₁₄Si** are subjected to Hay conditions, protodesilylation occurs in the presence of the oxidizing agent and $PtC_{24}Pt$ (36%) and $PtC_{28}Pt$ (51%) are isolated. Reactions of PtC_6H and $PtC_{10}H$ with PtCl (CuI, $HNEt_2$) give **PtC₆Pt** (56%) and **PtC**₁₀Pt (84%). The effect of the chain lengths in P_tC_xPt upon thermal stabili-

Keywords: carbyne • oxidative coupling · platinum · polyynes · structure elucidation · UV/Vis spectroscopy

ties (>200 °C for $x \le 20$), IR $v_{\text{C} \equiv \text{C}}$ patterns (progressively more bands), colors (yellow to orange to deep red), UV/Vis spectra (progressively redshifted and more intense bands with ε > 400 000 $\text{M}^{-1}\text{cm}^{-1}$), redox properties (progressively more difficult oxidations), and NMR spectra (many monotonic trends) are analyzed, including implications for the sp carbon allotrope carbyne. Whereas all other dodecaynes and tetradecaynes rapidly decompose at room temperature, $P₁C₂₄P₁$ and **PtC₂₈Pt** remain stable at >140 °C. Crystal structures of **PtC**_xSi ($x=6, 8$, 10) and **PtC**_r**Pt** $(x=6, 8, 10, 12)$ have been determined.

Introduction

Chains of sp carbon atoms $(C_x$ chains) represent the most basic and wirelike unsaturated bridging organic ligands, and they are impossible to twist out of conjugation. Accordingly, they are used extensively as connecting units in sophisticated molecular assemblies.^[1] Two decades ago, only a handful of compounds were known in which such moieties spanned two transition metals, $[(L)_mMC_xM'(L')_{m'}].^[2]$ There are now numerous examples, $[2-4]$ the result of extensive efforts that have been motivated by a variety of fundamental and applied objectives. Many of the latter are connected to redox and charge- or energy-transfer phenomena involving the metal termini.^[2,3,5]

Early studies often focused on the breadth of complexes that can be made. However, many current efforts seek to test the limits of homologous series of compounds. One

- [a] Q. Zheng, Dr. A. C. Frisch, Dr. F. Hampel, Prof. Dr. J. A. Gladysz Institut für Organische Chemie Friedrich-Alexander-Universität Erlangen-Nürnberg Henkestrasse 42, 91054 Erlangen (Germany) Fax: (+49) 9131-852-6865 E-mail: gladysz@organik.uni-erlangen.de [b] Dr. J. C. Bohling, Dr. T. B. Peters
- Department of Chemistry, University of Utah Salt Lake City, UT 84112 (USA)
- Supporting information for this article is available on the WWW under http://www.chemeurj.org/ or from the author. It contains fifteen figures illustrating CV traces for $P_{t}C_{x}P_{t}$, graphical analyses of NMR data, and packing diagrams for crystallographically characterized compounds.

thrust has involved extremes in oxidation states—that is, how many can be generated, or how far a complex can be oxidized or reduced—and the consequences for electronic and geometric structure, and reactivity.^[3,6] Another thrust has involved extremes in chain lengths. Are there practical upper limits, and do the challenges have more to do with synthetic methodologies or product stabilities? The longer the chains, the closer the complexes model the polymeric sp carbon allotrope, carbyne.[7] Despite many studies, this remains the poorest characterized and understood of the classical carbon allotropes.

Most homologous series of C_x complexes characterized to date have polyynediyl structures, $[(L)_mM(C=C)_nM(L)_m]$. Species with cumulenic bridges are much less stable.^[8] Of the polyynediyl complexes, only those with ${Fe(n^5 C_5Me_5(CO)_2\}^{[9]}$ { $Ru(\eta^5-C_5R_5)(L)_2$ } or { $Ru(L')(L)_4]^{n+}$,^[10] ${Re(\eta^5 \text{-} C_5Me_5)(NO)(PPh_3)}$,^[11] ${Ru_2(2\text{-}anilinopyridinate)}_4$,^[12] ${Pt(C_6F_5) {P(p-tol)_3}}_2$ ^[13] and ${Pt(C_6F_5)(RAr_2P)_2}^{[14]}$ endgroups have been extended to long chain lengths, *beyond* four triple bonds ($\geq C_{10}$). Interesting related complexes with tricobalt clusters joined by μ_3 - η^1 -carbon chains have also been reported.^[10a] However, it has so far only proved possible to isolate significant quantities of one eicosadecaynediyl or C_{20} complex, which has ${Re(\eta^5)}$ $C_5Me_5(NO)(PPh_3)$ } endgroups.^[11a] Outside of trace quantities evidenced by HPLC and UV/Vis spectra,^[13] other C_{20} or higher species have remained unknown.

In this paper, we describe the most extensive series of C_r complexes isolated to date $(x=6, 8, 10, 12, 16, 20, 24, 28)$ and their detailed physical characterization. These feature the p-tolyl-substituted platinum endgroup $\{Pt(p-tol)\}P(p-tol)\}$ $\{tol\}$ ₃ $\}$, which is more electron-rich than the pentafluorophenyl analogue mentioned above.^[13] Complexes in this series are designated PtC_xPt , per the nomenclature system exemplified in Scheme 1. The two highest members, $P_{1}C_{24}P_{1}$ and PtC_{28}Pt , were isolated by a new coupling protocol that may have considerable generality. The effect of chain length upon thermal, spectroscopic, redox, and structural properties is carefully documented. These data help, together with those for all series of C_x complexes, to bound the properties

Chem. Eur. J. 2006, 12, 6486 – 6505 © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim <www.chemeurj.org> – 6487

of the polymeric sp carbon allotrope carbyne.^[7] A portion of this work has been communicated.^[15]

Results

Syntheses of monoplatinum complexes: Platinum chloride complexes are easily converted to butadiynyl complexes,^[13, 14a, 16] which are versatile platforms for sp carbon chain extension. Thus, a route to *trans*- $[PtCl(p-tol)]{P(p-tol)}_3$ (PtCl) was sought. The cyclooctadiene (cod) complex [PtCl₂(cod)], which is readily available from K_2PtCl_4 ,^[17] was treated with the commercial Grignard reagent p-tolMgBr (2.5 equiv). As shown in Scheme 1, workup gave the $bis(p$ tolyl) complex $[Pt(cod)(p-tol)_2]$ in 65% yield.^[18] Subsequent treatment with HCl, generated from acetyl chloride (1.7 equiv) in MeOH/CH₂Cl₂, afforded the chloride complex [PtCl(p-tol)(cod)] (94%).¹⁹ Reaction with P(p-tol)₃ then gave the target molecule PtCl (94%). As with all bis(phosphine) complexes below, NMR spectra showed virtual coupling.^[20] In this case, the ¹³C NMR signal for the ipso carbon atoms of the $P(p$ -tol)₃ groups was a triplet, with equal apparent coupling to both phosphorus atoms.

In accord with literature precedent,^[13,14a,16] a solution of **PtCl** and CuI (0.12 equiv) in HNEt₂ was treated with excess $H(C=C)$ ₂H^[21] in THF. As shown in Scheme 1, workup gave the butadivnyl complex trans- $[Pt(p-tol)]P(p-tol)32$ C)₂H₁] (PtC₄H) as a tan powder in 82% yield. All new complexes that could be isolated in sufficient quantity were characterized by IR, NMR $(^{1}H, ^{13}C, ^{31}P)$, and UV/Vis spectroscopy, as well as mass spectrometry, microanalysis, DSC, and TGA. Key data are summarized in Tables 1–4, and are analyzed below. Other data are supplied in the Experimental Section. In the case of $P_tC₄H$, the butadiynyl ¹³C NMR signals exhibited coupling constant patterns $(J(C,H), J (C, Pt)$, $J(C, P)$) that allowed unambiguous assignments (Table 3 and Experimental Section). These facilitate signal assignments with the longer chain complexes.

We next sought to extend the sp carbon chain in $P_{t}C_{4}H$ by means of oxidative cross coupling reactions. To prepare as many homologues as possible, initial efforts used the commercially available two-carbon building block, HC $CSiEt_3$. Hay conditions (excess O_2 , cat. CuCl/TMEDA, acetone)^[22] are often effective with platinum alkynyl complexes $(TMEDA = N, N, N', N'-tetramethyl-1, 2-ethanediamine)$. Thus, as shown in Scheme 2, PtC₄H and a 30-fold excess of HC= $CSiEt$ ₃ were similarly condensed. Workup gave the yellow triethylsilylhexatriynyl complex $P_{t}C_{0}Si$ in 77% yield. When 20- or 10-fold excesses were employed, yields were lower. The coupling proceeds under milder conditions than with the analogous pentafluorophenyl platinum complex.[13] Presumably the more electron releasing p -tolyl ligand facilitates oxidation.

To further extend the sp carbon chain, the protodesilylation of **PtC.Si** was attempted. As shown in Scheme 2, the addition of $nBu_4N^+F^-$ in wet THF gave the hexatriynyl Scheme 1. Synthesis of precursor complexes. complex **PtC₆H** in 84% yield after a low-temperature

Table 1. Thermal stability data [°C].

	Mass loss (onset) TGA	DSC $T_i/T_e/T_p/T_c/T_f$	Decomposition (onset) capillary thermolysis ^[a]
PtC ₄ H	192	$179/-/-/-/-$ [b]	$180^{[c]}$
PtC ₆ Si	220	221/232/234/235/235 ^[d]	$220^{[e]}$
PtC _s Si	214	127/137/147/154/162[d]	
		$184/-/-/-/-/-$ ^[b]	$112^{[e]}$
PtC ₁₀ Si	233	128/140/146/150/162 ^[b]	
		204/216/221/229/239 ^[b]	$105^{[f]}$
PtC ₁₂ Si	240	143/167/186/200/209 ^[b]	$101^{[f]}$
PtC ₁₄ Si	253	126/140/157/169/182 ^[b]	
		186/186/193/197/198 ^[b]	
		204/216/221/229/239[b]	$105^{[f]}$
$PtC_{16}Si$			$104^{[f]}$
PtC ₆ Pt	221	134/138/144/148/155 ^[b]	
		$199/-/-/-/-/-$ [b]	$204^{[f]}$
PtC _s Pt	221	140/152/165/178/188 ^[b]	
		190/194/203/211/214 ^[b]	$206^{[f]}$
$PtC_{10}Pt$	238	$223/-/-/-/-/-$ ^[b]	$230^{[f]}$
PtC ₁₂ Pt	228	$250/-/-/-/-/-$ ^[b]	$245^{[f]}$
$PtC_{16}Pt$	237	$199/-/-/-/-/-$ ^[b]	$200^{[f]}$
$PtC_{20}Pt$	222	142/152/168/185/211 ^[b]	$148^{[f]}$
$PtC_{24}Pt$	227	128/145/169/193/213 ^[b]	$350^{[g]}$
$PtC_{28}Pt$	215	124/141/158/172/190 ^[b]	350 ^[g]

[a] Sealed; conventional melting point apparatus. [b] Exotherm. [c] Decomposition with liquefaction. [d] Endotherm; that of PtC_6Si is immediately followed by an exotherm. [e] Decomposition with melting. [f] Decomposition without melting. [g] There was no evident change in the appearance of the sample below this temperature.

workup. This compound was much more labile than PfC_4H , and darkened within a few minutes at room temperature. The hexatriynyl 13 C NMR signals exhibited coupling constant patterns $(J(C,H), J(C,P), J(C,P))$ that allowed unambiguous assignments (Table 3).

Another Hay cross coupling was conducted with PtC_6H and HC=CSiEt₃. However, the target molecule **PtC**₈Si (yellow powder) was isolated in only 23% overall yield

Table 2. $IR,$ ^{[a] 31}P NMR,^[b] and cyclic voltammetry^[c] data.

from $P{tC_6}$ Si. The major product was the homocoupled species PtC₁₂Pt (38%), which is best prepared as described below. Analogous pentafluorophenyl platinum complexes also give increasing amounts of homocoupling with increasing sp carbon chain lengths. $[13]$ The Brønsted acidities of terminal polyynes similarly increase with chain length.^[23] Hence, there appears to be a correlation between the homocoupling/heterocoupling selectivities and the relative acidities of the reaction partners. We wondered whether higher homologues of $HC = CSiEt_3$ might give better results. This would also enhance the efficiency of chain extension.

Thus, cross couplings of P_tCH and trialkylsilylbutadiynes were investigated. However, reactions of PtC₄H and the readily available divne $H(C=C)$. SiMe₃ were disappointing. Certain data suggested complications due to trimethylsilyl group cleavage. To enhance substitution stability, the triethylsilyl analogue $H(C=C)_{2}SiEt_{3}$ was sought. Although this compound is known,[24] convenient large-scale syntheses are lacking. After several trials,^[25] it was found that the sequential reaction of $H(C=C)_{2}H$ with *nBuLi* (1.1 equiv) and ClSiEt₃ gave H(C \equiv C)₂SiEt₃ in 46% yield on an eight-gram scale. Some $Et_3Si(C=C)$, $SiEt_3$ also formed, but was easily separated by distillation.

As shown in Scheme 3 (top), PtC₄H and $H(C=C)_{2}SiEt_{3}$ (20 equiv) were coupled under Hay conditions analogous to those used with $HC = CSiEt$ ₃ in Scheme 2. Chromatography gave, in inverse order of elution, the target complex P_tC_sSi (29%), the higher homologue $P_{t}C_{12}Si$ (30%; orange), and a small amount of the next highest homologue $PfC_{16}Si$ (1%; deep red). Trace amounts of a material believed to be **PtC₂₀Si** were also isolated, but sufficed only for a UV/Vis spectrum. The simplest explanation for the formation of the higher homologues would involve the competitive desilylation of $P{tC_rSi}$ under the reaction conditions. Indeed, small quantities of $P{t}C_8$ Si could be detected in the above synthesis of **PtC₆Si** (Scheme 2). Also, UV/Vis data indicated the for-

[a] Powder film. [b] In CDCl₃. [c] Scan rate 100 mVs⁻¹ under conditions described in the Experimental Section. [d] Additional band: 3293 (m, ν_{ECH}). [e] additional band: 3312 (w, $v_{\text{BC-H}}$). [f] Exact value difficult to estimate from voltammogram.

Table 3. ¹³C NMR data (δ [ppm] in CDCl₃).

	$PtC \equiv (^2J(C,P)$ [Hz])	$PtC \equiv C$	$C = C$ Si	$C = CSi$	Other
PtC ₄ H	110.6(13.8)	95.3			72.9, [a,b] 58.1 [b,c]
PtC ₆ H	117.4 (14.5)	96.0			71.5. [b,d] 66.0. [a,b] 64.7. [b,e] 54.8 [b,c]
PtC_4Si	114.2 $(-)$	97.6	93.4	75.7	
PtC_6Si	117.5(13.9)	95.8	91.8	79.1	66.6, 54.9
PtC _s Si	120.4(13.6)	95.6	90.6	81.9	67.0, 64.8, 58.4, 55.1
$PtC_{10}Si$	122.4(14.8)	95.4	89.8	84.1	67.1, 65.6, 63.5, 59.7, 58.7, 55.3
$PtC_{12}Si$	123.7(13.9)	95.3	89.4	85.5	67.4, 66.0, 64.4, 62.8, 60.9, 60.1, 58.9, 55.3
PtC ₁₄ Si	124.6(14.3)	95.2	89.1	86.5	67.6, 66.3, 64.7, 63.6, 62.3, 61.6, 61.2, 60.1, 58.8, 55.3
$PtC_{16}Si$	125.2(14.5)	95.1	88.9	87.1	$67.9, 66.6, 65.0, 63.9, 63.1, 62.1, 62.0$ ^[f] $61.2, 60.1, 58.8, 55.4$
PtC ₆ Pt	107.3(15.3)	99.4	-		60.5
PtC ₈ Pt	112.9(15.7)	97.6	-	-	63.8, 57.7
$PtC_{10}Pt$	117.3(15.3)	96.5	$\qquad \qquad -$	-	64.7, 61.6, 56.8
PtC ₁₂ Pt	120.1(14.5)	96.0	$\qquad \qquad -$	$\overline{}$	65.9, 63.2, 60.5, 56.1
$PtC_{16}Pt$	123.3(14.5)	95.5			67.1, 65.3, 63.2, 61.3, 59.5, 55.7
$PtC_{20}Pt$	124.9(14.5)	95.2			67.7, 66.4, 64.6, 63.2, 62.0, 60.6, 59.1, 55.6
$PtC_{24}Pt$	$125.6(-)$	95.0			67.7, 66.6, 65.1, 64.0, 63.1, 62.2, 61.3, 60.1, 58.8, 55.3
$PtC_{28}Pt$	$126.0(-)$	95.0			67.8, 66.9, 65.4, 64.5, 63.7, 63.1, 62.5, 61.8, 61.0, 60.0, 58.8, 55.3

[a] PtC=CC=. [b] See Experimental Section for $J(C, H)$ values that justify the assignment. [c] PtC=CC=C. [d] PtC=CC=CC=. [e] PtC=CC=C. [f] Two peaks overlapped.

Table 4. UV/Vis data.

[a] 1.25×10^{-5} M in CH₂Cl₂. [b] the amount of sample available did not allow the ε value to be determined. [c] 1.25×10^{-6} M in CH₂Cl₂.

mation of trace amounts of PtC₁₆Pt, PtC₂₀Pt, PtC₂₄Pt, and $PtC_{28}Pt$ (see below).

As shown in Scheme 3 (bottom), $P{t}C_6H$ was generated in situ from PtC_6Si and $nBu_4N^+F^-$, and treated with ClSiMe₃, which is believed to serve as a fluoride-ion scavenger. In previous work, this step was necessary for the success of subsequent Hay couplings.^[13] Accordingly, the addition of $H(C=C)$ ₂SiEt₃ (20 equiv) under the Hay conditions gave **PtC**₁₀Si (59%, orange) and **PtC**₁₄Si (7%, red). For some reason, this coupling is reproducibly more selective than that of $PtC₄H$. Trace quantities of a material believed to be $PtC_{18}Si$ were also isolated, as evidenced by a UV/Vis spectrum.

Similar smaller scale exploratory sequences were conducted with **PtC**₈Si and **PtC**₁₀Si. The former gave **PtC**₁₂Si in 42% yield, and the latter $P₁₄Si$ in 20% yield. Higher homologues presumably formed, but the scales were not sufficient for isolation. No attempts were made to detect the intermediates PtC₈H and PtC₁₀H; which are certain to be extremely labile. To our knowledge, $P_{t}C_{14}Si$ and $P_{t}C_{16}Si$ feature the longest sp carbon chains with a single transitionmetal endgroup. Key spectroscopic data for **PtC**_rSi are summarized in Tables 1–3, including that of the previously reported complex $\mathbf{PtC_4Si}^{[26]}$

Syntheses of diplatinum complexes: The homocoupling of PtC_xH under Hay conditions was investigated next. As shown in Scheme 4, the oxidation of $PfC₄H$ at 40 °C gave the yellow octatetray nediyl complex $P_{\text{t}}C_{8}P_{\text{t}}$ in 74% yield. The analogous reaction with isolated $P{tC₆H}$ proceeded at room temperature, and afforded the bright orange dodecahexaynediyl complex $P{tC_{12}}P{t}$ in 83% yield. However, as noted above, $P_{\text{t}}C_{6}H$ is quite labile, and the feasibility of a one-pot synthesis from $P{t}C_6$ Si was also tested. Accordingly, the sequential addition of $nBu_4N^+F^-$, ClSiMe₃, and the Hay coupling components gave $PtC_{12}Pt$ in 88% yield. Thus,

Scheme 2. Two-carbon sp chain extension reactions.

PtC₈Si was similarly converted to $P t C_8H$ and subjected to the Hay conditions, but at 0° C. Workup gave the red hexadecaoctaynediyl complex $P{tC_{16}}P{t}$ (70%).

Given our past experiences with analogous pentafluorophenyl platinum complexes, we were doubtful that this methodology could be further extended.^[13] Nonetheless, as shown in Scheme 4, $PtC_{10}Si$ was analogously treated at -25 °C. Workup gave the red eicosadecaynediyl complex **PtC₂₀Pt** in 72% yield, only the second such species to be isolated in significant quantity.^[11a] However, when similar sequences were conducted with $PfC_{12}Si$ at $-25^{\circ}C$ or $-45^{\circ}C$, no tractable products could be isolated. Under these conditions, the rate of decomposition of the intermediate $P_{12}H$ is presumably too fast. Importantly, a $CISiMe₃$ treatment step must be survived before any oxidizing agent is encountered. However, note the steadily decreasing temperature requirement for the homocoupling of $P_{\text{t}}C_{\text{t}}H$ as the chain is lengthened.

Thus, a modified procedure was attempted. Qualitatively, the rates of desilylation of $P_{t}C_{x}Si$ appeared to increase with chain length, in accord with the leaving-group abilities expected from the Brønsted acidity trends given above.^[23] Also, desilylation somehow occurs under the conditions of Scheme 3 (top), in which fluoride ion is absent. We therefore wondered whether $P_{t}C_{12}Si$ might undergo protodesilylation under the Hay homocoupling conditions.^[27] Since $P_{12}H$ would then be generated in the presence of an oxidizing agent, there would be a better chance that homocoupling could compete. As shown in Scheme 4, $PfC_{12}Si$ was

Scheme 3. Four-carbon sp chain extension reactions.

treated under such conditions at 10°C. Indeed, chromatography gave the deep red tetracosadodecaynediyl complex **PtC₂₄Pt** in 36% yield, along with 38% of recovered **PtC₁₂Si**. A similar reaction of $PfC_{14}Si$ at 0°C gave the deep red octacosatetradecaynediyl complex $P₁C₂₈Pt$ in 51% yield, shattering existing length records for C_r complexes.

As a final synthetic challenge, analogous complexes with odd numbers of triple bonds were sought. These cannot be accessed by homocouplings. Thus, the cross coupling sequence in Scheme 5 (top, A) was attempted. First, PtC_6H was generated in situ from $P{t}C_6$ Si as described above. Then **PtCl**, together with $HNEt_2$ and a catalytic amount of CuI, was added. This models the coupling conditions for **PtCl** and $H(C=C)$ ₂H in Scheme 1. Workup gave the yellow hexatriynediyl complex PtC_6Pt in 56% yield. An analogous sequence was conducted with **PtC**₁₀Si at 0 °C. As shown in Scheme 5 (bottom), workup gave the orange decapentaynediyl complex $P{tC_{10}}P{t}$ in 84% yield. However, a similar attempt to convert $P₁₄Si$ to the tetradecaheptaynediyl complex $PtC_{14}Pt$ was unsuccessful. This constitutes further evi-

Scheme 4. Syntheses of diplatinum polyynediyl complexes with even numbers of C=C bonds: a) wet $nBu_4N+F^-/Acetone$; b) ClSi(CH₃)₃; c) cat. CuCl/ TMEDA, O₂, Acetone.

Scheme 5. Syntheses of diplatinum polyynediyl complexes with odd numbers of $C\equiv C$ bonds.

dence for the rapid decomposition of PtC_xH (x \geq 12) generated from $nBu_4N^+F^-$ in wet THF.

An alternative strategy would entail the bis(functionalization) of organic polyynes. As shown in Scheme 5 (top, B), the readily available triyne $Me₃Si(C\equiv C)₃SiMe₃^[28]$ was treated with wet $nBu_4N^+F^-$ (2.0 equiv) at $-78^{\circ}C$ to generate H- $(C\equiv C)_{3}$ H. This was added to **PtCl** (2.0 equiv), HNEt₂, and a catalytic amount of CuI at -45° C. Workup gave PtC₆Pt in 30% yield, slightly less than the overall yield from PtCl in synthesis A (35%). In the early stages of this project, a related sequence was attempted with the octatetrayne $Me₃Si (C=)/2$ SiMe₃.^[29] Less than one equivalent of **PtCl** was used, in hopes of selectively generating P_fC_gH . Then the Hay conditions were applied. Small quantities of the target complex **PtC**₁₆Pt were isolated. However, numerous other products formed, including $P{tC_8}P{t}$ and the trimethylsilyl analogue of **PtC** $_{8}$ Si. The latter presumably arises from incomplete desilylation.[30]

The complexes PtC₆Pt, PtC₈Pt, PtC₁₀Pt, PtC₁₂Pt, PtC₁₆Pt, **PtC₂₀Pt, PtC₂₄Pt**, and **PtC₂₈Pt** were isolated as air-stable, analytically pure powders. In the cases of $PtC_{20}Pt$, $PtC_{24}Pt$, and $PtC_{28}Pt$, there was no significant decomposition over a period of several days, although slow decomposition occurred in solution. Lower homologues were stable for months. As noted above, the colors progressively deepened from yellow (PtC₆Pt) to orange (PtC₁₀Pt) to red (PtC₁₆Pt) to deep red (PtC_{24}Pt), consistent with the UV/Vis data given in

Table 4. Spectra for the entire series are illustrated in Figure 1 and further analyzed below.

The packing diagrams were also analyzed. A representative case is shown in Figure 4, and others are provided in

Figure 1. UV/Vis spectra of PfC_xPt (1.25 × 10⁻⁶ M in CH₂Cl₂).

DSC and TGA measurements indicated excellent thermal stabilities, as summarized in Table 1.^[31] The former revealed exothermic decompositions that could be grouped as follows. From PtC₁₀Pt through PtC₁₆Pt, the T_i and T_e values^[31] were about 200 °C. However, those for $PfC_{20}Pf$, $PfC_{24}Pf$, and **PtC₂₈Pt** showed steady decreases, first to about 150 °C and then 140 °C (T_e). The shorter-chain complexes **PtC₆Pt** and PtC_sPt exhibited exotherms at similar temperatures. Nonetheless, in no case did any mass loss occur below 200° C. Visually, no phase transitions or signs of decomposition were apparent when PtC₂₄Pt and PtC₂₈Pt were heated to 350 °C in capillaries. These data, and the spectroscopic properties summarized in Tables 2–4, are further analyzed in the Discussion section.

Crystallography and cyclic voltammetry: In the course of characterizing $P_{t}C_{s}Si$ and $P_{t}C_{s}P_{t}$, extensive attempts were made to obtain crystals. The crystal structures of seven complexes or solvates thereof could be determined as summarized in Table 5 and the Experimental Section. The molecular structures are illustrated in Figures 2 and 3, and analyzed below. Key bond lengths and angles, and other structural parameters, are listed in Tables 6 and 7, together with those of the previously characterized **PtC**₄Si complex.^[26] One complex, designated as $Pt'C_8Pt'$, features PPh₃ instead of P(p tol)₃ ligands, and was prepared by an analogous sequence described earlier.[15a]

All of the diplatinum complexes exhibited an inversion center. One consequence is that the coordination planes of the platinum endgroups define angles of 0° (e.g., $(C_{\text{inso}} PPt_1P-C_\alpha$) vs. $(C_{ipso}-PPt_2P-C_\alpha)$). However, as established by a recent computational study, $[32]$ there is no electronic basis for this orientation. It apparently reflects a deep-seated packing preference.

the Supporting Information. All of the complexes except one crystallized in motifs with a single set of parallel chains. The exception, PtC_8Si , exhibited two non-parallel sets of parallel chains. Both patterns have extensive precedent in conjugated polyynes.[4] The parallel chains nearest to each other were identified, and the shortest C_{sp} - $C_{\rm{sp}}$ distance calculated (Tables 6 and 7). There is a tendency for the endgroup of one molecule to nest along the carbon chain of its neighbor, as any dumbbell-shaped object would be expected to pack. Thus, the endgroups are "offset" $[4]$ in the longer chain complexes PtC_8Si , $PtC_{10}Si$,

Pt'C₈Pt', **PtC**₁₀**Pt**, and **PtC**₁₂**Pt** by 0.76, 0.13, 0.38, 0.88, and 0.45 of the platinum–silicon or platinum–platinum distance. The nearest chains in $P_{\text{t}}C_{8}Si$ and $P_{\text{t}}C_{10}Si$ adopt "head-totail" arrangements.

Complexes with chains longer than C_{12} are conspicuously absent among the structures in Figures 2 and 3. The pentafluorophenyl complex analogous to $P_{1}C_{16}P_{1}$ crystallizes,^[13] but only with a large amount of solvent (ten molecules of benzene). Perhaps the bulky endgroups in PtC_rPt enforce spatial voids at long chain lengths that that are difficult to fill except with large quantities of easily volatilized or disordered solvent. The use of larger solvents or guest molecules might possibly help in future work. Nonetheless, from the data for $P₁₂Pt$ in Table 7, the platinum–platinum distance in PtC₂₈Pt can be estimated as 38.8 \AA .

Finally, oxidation reactions of $P_tC_rP_t$ were studied by cyclic voltammetry in CH_2Cl_2 . As summarized in Table 2, they appeared to become thermodynamically more difficult at longer chain lengths, as evidenced by increasingly positive $E_{p,q}$ values. The electronic basis for this trend, which is counterintuitive from the standpoint of organic polyynes, has been detailed in a computational study.[32] As expected, all complexes were more easily oxidized than the pentafluorophenyl analogues.^[13,33] However, the oxidation reactions were less reversible than those of the pentafluorophenyl analogues. As illustrated in the Supporting Information, additional peaks suggestive of electrode/chemical/electrode (ECE) processes were often observed, and in most cases there was no appreciable cathodic current. Hence, the $E_{\text{p,a}}$ values can only be taken as rough guides to the relative oxidation potentials.

Table 5. Summary of crystallographic data.

Polyynes **Polyynes FULL PAPER**

Discussion

Synthesis: Strategic considerations: The cross couplings of PtC_xH and HC \equiv CSiEt₃ in Scheme 2 parallel those reported earlier for analogous pentafluorophenyl platinum complexes.[13] An advantage adding two sp carbons stepwise is that in theory, all complexes $P_{t}C_{t}P_{t}$ with even numbers of $C\equiv C$ bonds can be accessed. However, despite the large excesses of $HC = CSiEt$ ₃ employed, progressively more homocoupling of $P{tC_xH}$ occurs with increasing chain length. Useful quantities of decapentaynyl complexes (e.g., $P_tC₁₀Si$) cannot be prepared in either series. Fortunately, as illustrated in Scheme 3, doubling the chain length of the silylated alkyne renders cross coupling more competitive. Given the empirical correlation with the relative acidities of the coupling partners noted above, the triyne $H(C=C)_{3}SEt_{3}$ would be even more effective. However, this labile compound has only been generated in solution, and the synthetic sequence is tedious.[24a]

Unfortunately, reactions of PtC_rH and H(C \equiv C)₂SiEt₃ are complicated by multiple cross couplings. We provisionally attribute this to subsequent in situ desilylation of the initial product to give $PtC_{x+4}H$. Reactions with excess diyne would then yield $\text{PtC}_{x+8}\text{Si}$. Note that multiple couplings occur in reactions in which fluoride ion is both absent (Scheme 3, top) and present (Scheme 3, bottom). In all cases chloride ions are available from CuCl, and sometimes from ClSiMe₃. Experiments to probe this mechanistic model and related points, for example, the effect of chain length upon crosscoupling rates, remain in progress.

Other in situ desilylations constitute key steps in the syntheses of the "record setting" complexes $PfC_{24}Pf$ and **PtC₂₈Pt.** As shown in Scheme 4, **PtC₁₂Si** and **PtC₁₄Si** are apparently converted to $PtC_{12}H$ and $PtC_{14}H$ under the Hay conditions. Perhaps chloride ion or adventitious water from the acetone solvent play critical roles. Importantly, homocoupling now becomes much faster than decomposition. As reflected by the appreciable amount of starting $P_{12}Si$ recovered in the synthesis of $P_{t}C_{24}P_{t}$, this route appears limited to reactants PtC_xSi with very long chain lengths, such that the PtC_x moiety becomes a sufficiently good leaving group.

Figure 2. Structures of PtC₆Si, PtC₈Si·(CH₂Cl₂), and PtC₁₀Si with solvent Figure 2. Structures of **PtC₆SI**, **PtC₈SI**·(CH₂Cl₂), and **PtC₁₀SI** with solvent
Figure 3. Structures of **PtC₆Pt** (benzene)₂, **Pt^C₈Pt** (acetone)₄ (1,2-difluor-
molecules omitted.

In terms of synthesis strategy, these data show that the limiting problem is not the stability of the target polyynediyl complexes PtC_xPt, but rather the precursors PtC_{x/2}H. Towards this end, the development of homocoupling methodologies that can make direct use of $[(L)_mM(C=)]$ _nSiR₃] species, or possibly tin analogues, should greatly aid the further progress of this field. There are other promising new synthetic routes to long polyynes being developed, the most advanced of which involve the Fritsch–Buttenberg–Wiechell rearrangement.[34] However, in efforts to date with hexadecaoctaynes, yields are still quite modest.

Several possible extensions of our methodology merit emphasis. First, reactions of the types in Scheme 3 might be conducted with still larger excesses of $H(C=C)_{2}SiEt_{3}$, and for extended periods, such that oligomerization to PtC_rSi with $x > 20$ occurs. Given the ready chromatographic separation of the complexes with $x > 20$ described above, the chances are good that mixtures of much higher oligomers can also be purified, as long as they are sufficiently stabile.

obenzene)_{1.5}, PtC₁₀Pt, and PtC₁₂Pt·(benzene)₂ with solvent molecules omitted.

Second, these could be evaluated as precursors to complexes PtC_xPt with substantially longer chains than in Scheme 4. Third, might more controlled cross couplings be realized with trialkylsilylbutadiynes that are less readily desilylated, such as the TIPS' derivative $H(C\equiv C)$, $Si(iPr)$ ₃ ?[35]

Thermal and oxidative stabilities: Polyynes normally possess highly positive heats of formation,^[36] and may be regarded as energy-rich materials that are intrinsically thermodynamically unstable. Transition-metal endgroups are electropositive and usually quite bulky. Hence, they are believed to provide both steric and electronic stabilization. Importantly, we have never encountered any explosions when handling complexes of the formula $[(L)_mM(C\equiv C)_mM(L)_m]$ or $[(L)_mM (C\equiv C)_{n}X$. In contrast, a variety of organic and halogenated polyynes are known to detonate.

As summarized in Table 1, PtC₁₀Pt, PtC₁₂Pt, and PtC₁₆Pt exhibit an exotherm and mass loss at approximately the

Polyynes **FULL PAPER**

same temperatures (\geq 200 °C), suggesting a coupled process. However, with PtC_6Pt and PtC_8Pt , the first exotherm occurs at a much lower temperature than mass loss $(140-150^{\circ}\text{C})$ (T_e) vs. 221 °C).^[31] One possibility would be some type of sp-

Table 6. Key interatomic distances $[\hat{A}]$ and bond angles $[°]$ for **PtC.Si.**

Table 7. Key interatomic distances [Å] and bond angles [°] for PtC.Pt.

	PtC_6Pt	Pt'C ₈ Pt'	$PtC_{10}Pt$	$PtC_{12}Pt$
Pt - $C1$	2.030(3)	2.011(4)	1.990(3)	1.990(3)
$C1 = C2$	1.193(5)	1.218(6)	1.190(5)	1.233(4)
$C2-C3$	1.388(5)	1.368(6)	1.404(4)	1.358(4)
C3=C3' or C3=C4	1.211(7)	1.223(6)	1.215(5)	1.210(5)
C4 $-C$ 5 or C4 $-C$ 4'		1.367(9)	1.342(5)	1.356(5)
$C5 = C5'$ or $C5 = C6$			1.228(7)	1.211(5)
$C6-C6'$				1.344(7)
$Pt1 \cdots Pt2$	10.4058	12.998(1)	15.3730(3)	17.9564(4)
sum of all bond lengths	10.433	13.007	15.510	18.060
from Pt1 to Pt2				
$Pt-P1$	2.2993(8)	2.3002(11)	2.3012(8)	2.3055(8)
$Pt-P2$	2.2946(9)	2.3073(11)	2.3102(9)	2.3164(8)
$Pt-Cipso$	2.056(3)	2.064(4)	2.078(3)	2.060(3)
$Pt-C1-C2$	174.0(3)	178.0(4)	173.2(3)	174.0(3)
$C1-C2-C3$	176.8(4)	176.5(5)	171.1(4)	174.5(4)
C2-C3-C3' or C2-C3-C4	179.3(6)	177.8(5)	177.1(4)	178.6(4)
C3-C4-C4' or C3-C4-C5		179.5(9)	176.4(4)	178.3(4)
$C4-C5-C6$			178.5(6)	177.5(4)
C5-C6-C6'				178.9(6)
average, Pt-C1-C2 and $C_{\rm SD}$ - $C_{\rm SD}$ - $C_{\rm SD}$	176.7	178.0	175.3	177.0
shortest $C_{sp}-C_{sp}$ distance between parallel chains	10.137	8.916	8.489	7.884

chain/sp-chain coupling or polymerization, as well documented for many 1,3-butadiynes in the solid state.^[4,37] The longer chain complexes $PtC_{20}Pt$, $PtC_{24}Pt$, and $PtC_{28}Pt$ also exhibit exotherms at lower temperatures (150–140 \degree C). In no cases are endotherms, indicative of reversible phase transitions such as melting, observed. In any event, the appreciable thermal stabilities of $PfC_{24}Pf$ and $PfC_{28}Pf$ support the supposition that higher homologues are viable synthetic targets. Note that the longer chain monoplatinum complexes **PtC**₁₀Si, PtC₁₂Si, and PtC₁₄Si also exhibit exotherms at lower temperatures (ca. $170-140$ °C) than their lower homologues.

Figure 4. Representative packing diagram: $P{tC_{10}}P{t}$ with P_P -tol₃ rings omitted and closest chain/chain contact illustrated.

Chem. Eur. J. 2006, 12, 6486 – 6505 © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim <www.chemeurj.org> – 6495

Literature data for organic polyynes often indicate lower stability thresholds. For example, tert-butyl capped species $Me₃C(C=C)_nCMe₃$ with $n=4–8, 10,$ and 12 have been isolated, but that with $n=12$ decomposed within 8 min at room temperature to an insoluble black material.[38] In the triethylsilyl series $Et_3Si(C=C)_nSiEt_3$, compounds with $n=6$ and 8 were isolable, but decomposed at room temperature or below; higher homologues $(n=10, 12, 16)$ were only generated in solution.^[24a] Tykwinski has recently shown that analogues with bulkier tri(isopropyl)silyl endgroups $(n=8, 10)$ are stable to $>105^{\circ}C$.^[34] Also, Hirsch has described two polyyne series with 3,5-disubstituted aryl endgroups, the highest members of which $(n=8-10)$ were stable solids at room temperature.[39] Perhaps it will eventually be possible to isolate stable molecules in some of these newer series with chains longer than C_{20} .

As noted above, the title complexes show no significant decomposition as solids in air over periods ranging from days to months. However, the exceedingly poor reversibilities of the electrochemical oxidations are surprising, given the significant reversibilities with pentafluorophenyl analogues with $C_4 - C_8$ chains.^[13] We presume, by analogy to literature precedent, $[40]$ that the initial step in both series involves a Pt^{II}/Pt^{III} couple, giving a mixed valence complex. Perhaps the fluorine substituents in some way hinder a subsequent chemical reaction that involves the aryl substituent.

IR and NMR spectra: Both PtC, Si and PtC, Pt exhibit a constant set of IR absorptions arising from the endgroups. The distinctive $v_{\text{C} \equiv \text{C}}$ bands are summarized in Table 2, and show several trends. First, most of the monoplatinum complexes exhibit more bands than diplatinum complexes of the same chain length, consistent with their lower symmetry. Second, the number of bands increases with chain length, in agreement with computational studies of organic polyynes.[41] For the diplatinum complexes, this corresponds to approximately one band per two $C\equiv C$ units. The extinction coefficient of the most intense band, as normalized to the endgroup absorptions, also increases with chain length. Finally, the frequencies tend to be slightly lower than those of pentafluorophenyl analogues.[13]

With regard to the NMR data, the 1 *J*(P,Pt) values (Table 2) show a striking chain-length effect, monotonically decreasing for higher values of x or the number of $C\equiv C$ units n . The value of any measurable quantity for a series of conjugated polyynes can be plotted versus 1/n. An extrapolation to the y intercept $(1/n=0)$ then gives the hypothetical value for the infinite-chain species. In the cases of $P_{t}C_{x}Si$ and PtC_rPt , such plots are not very linear (see Supporting Information). Nonetheless, values of 2880 ± 4 Hz can be confidently predicted for both $\text{PtC}_{\infty}\text{Si}$ and $\text{PtC}_{\infty}\text{Pt}.$

With aryl bis(phosphine) platinum complexes of the formula trans-[Pt(p-ZC₆H₄)(PEt₃)₂X] (X=Br, H), the ¹J(P,Pt) values decrease as the group Z becomes more electron-withdrawing.^[42] Thus, the trends in Table 2 provide further evidence for the increasing electronegativity of longer $(C=C)$ _n chains, as invoked above to rationalize relative desilylation rates and other phenomena. Complementary data are provided by the IR v_{NO} values of analogues with rhenium nitrosyl endgroups, which progressively increase with chain length.^[11a] Enhanced electronegativity also accounts for the about 10% lower $\frac{1}{J(P, P_t)}$ values of the analogous pentafluorophenyl complexes.^[13] However, the $31P$ NMR chemical shifts (Table 2) do not show a clear trend with chain length, likely due to the magnitude of the measurement error.

The ¹³C NMR data (Table 3) show a number of conspicuous trends. First, the PtC \equiv signals of both PtC_xSi and PtC_xPt shift monotonically downfield with increasing chain length $(\Delta\delta=11.0$ and 18.3 ppm). Plots versus $1/n$ are quite linear $(R>0.997$; Supporting Information), and give a limiting chemical shift of $\delta = 131 \pm 2$ ppm for both **PtC**_{∞}Si and **PtC**_{∞}Pt. The coupling constants ²J(C,P) can also be examined for trends. However, the $Pt\overline{C}$ signals are further coupled to 195 Pt (abundance 33.8%). This decreases the intensity of the main peak and renders the splitting more difficult to accurately determine, and sometimes impossible to observe.

The PtC \equiv C signals of PtC_rSi and PtC_rPt fall into a narrower chemical shift range $(\Delta \delta = 2.5$ and 4.4 ppm). They move downfield with increasing chain length, reaching a limit of $\delta = 94.5 \pm 0.2$ ppm for both series of compounds. In the case of PtC_xSi, the \equiv CSi signal undergoes a downfield shift ($\Delta\delta$ =11.4 ppm), while the downfield C=CSi signal undergoes a upfield shift ($\Delta \delta$ =4.5 ppm). When **PtC**₁₆Si is reached, the signals that were once widely separated in **PtC₄Si** are nearly degenerate ($\Delta\delta$ = 12.7 vs. 1.8 ppm). For **PtC**_{∞}Si, plots versus $1/n$ predict a crossing to limiting values of $\delta = 87.5 \pm 0.3$ and 93 ± 1 ppm, respectively.

The remaining C=C signals of PtC_rPt cluster between δ = 67.9 and 55.3 ppm. Based upon assignments made for related dirhenium complexes, [11a] the PtC=CC signals should have chemical shifts of $\delta = 66-67$ ppm. The most upfield signal moves further upfield with increasing chain length, and a limiting value of $\delta = 55.0 \pm 0.3$ ppm can be predicted for $P_{\text{t}}C_{\infty}P_{\text{t}}$. Similar clusters of peaks in this region have been noted in all series of long conjugated polyynes characterized by ¹³C NMR spectroscopy.^[11a, 13, 34, 39, 43] Recent labeling studies suggest that the upfield signal is not associated with the innermost carbon atom.^[34b] Therefore, the resonances of PtC₂₈Pt at δ =60–63 ppm likely more closely model the chemical shift of the polyyne form of carbyne. The remaining $C\equiv C$ signals of **PtC**_rSi exhibit analogous chemical shift phenomena.

UV/Vis spectra: The UV/Vis spectra of PtC_xPt and PtC_xSi (Table 4 and Figure 1) exhibit distinctive chain-length effects. As found with all other series of long conjugated polyynes,[11a, 13, 24a, 34, 38, 39, 43, 44] increasing numbers of progressively more intense bands are observed. Extinction coefficients (ε) of $>400000 \,\mathrm{m}^{-1} \,\mathrm{cm}^{-1}$ are reached, and the deepening colors of the complexes are noted above. In all cases, particular care was taken with respect to sample purity. For $P_{t}C_{t}S_{t}$, **PtC**₁₆Si, and **PtC**₂₀Si, the quantities isolated were not sufficient for accurate ε value determinations. Hence, the following analysis focuses on the diplatinum complexes $P_{t}C_{r}P_{t}$.

A recent time-dependent DFT study of the model diplatinum complexes trans,trans- $[(C_6H_5)(H_3P)_2Pt(C\equiv C)_nPt(PH_3)_2$ - $(C₆H₅)$] ($n=2, 3, 4, 5$)^[32] allows the principal electronic transitions in Figure 1 to be confidently assigned. Two $\pi \rightarrow \pi^*$ bands are predicted. The one at longer wavelength has predominant $HOMO \rightarrow LUMO$ character, but decreases markedly in intensity with increasing chain length. Only in the case of the C_4 complex is it computed to be more intense. The one at shorter wavelength is multiconfigurational, but with increasing chain length takes on more $HOMO \rightarrow$ LUMO character, and becomes dramatically more intense. Accordingly, the absorptions of $P_{\text{t}}C_{\text{t}}P_{\text{t}}$ at 489, 472, 444, 411, 371, 350, and 337 nm (x=28, 24, 20, 16, 12, 10, 8) are assigned to this transition (calcd for $x=10$ and $8^{[32]}$ 352 and 337 nm).[45]

In the case of PtC_8Pt , three much weaker bands appear at longer wavelengths than the most intense 337 nm band (359, 387, 419 nm, ε 17600–5600 $\text{M}^{-1} \text{cm}^{-1}$). These are believed to represent a vibrational progression of the other transition (calcd 446 nm). Analogous band patterns of the triethylsilyl-, methyl-, and phenyl-capped tetraynes $Et_3Si(C\equiv C)_4SiEt_3$, $Me(C\equiv C)_4Me$, and $Ph(C\equiv C)_4Ph$, respectively, have been similarly interpreted.^[24a, 34a, 46] We have observed such fingerprints with all diplatinum octatetraynediyl complexes prepared to date.^[13,14a] Complex PtC₁₀Pt exhibits three similar bands (391, 424, 462 nm), which are illustrated in Figure 5 (inset) and interpreted analogously. This pattern remains detectable with PtC₁₂Pt (420 sh, 455, 499 nm), but the lowest ε value is only $880 \text{ m}^{-1} \text{ cm}^{-1}$, consistent with the prediction of

Figure 5. Relationship between λ_{max} values for the most intense UV/Vis absorptions of **PtC_xPt** ($x \ge 8$) and 1/n, in which n is the number of C=C units. A representative extrapolation involving the complexes with the five longest chains is illustrated $(R=0.993)$. Inset: partial UV/Vis spectrum of $PfC_{10}Pf$ showing the weak intensity longer wavelength bands.

diminishing intensities. Analogous bands could not be detected with $PtC_{20}Pt$.

The λ_{max} values for the most intense absorptions of PtC₈Pt through **PtC**₂₈Pt were plotted versus $1/n$. As shown in Figure 5, a good linear correlation was obtained for the five longest chain complexes $(R=0.993)$, giving a y intercept of 573 nm. Polynomial curve fittings involving all complexes or subsets thereof gave values somewhat greater than 600 nm. Other analytical methods for estimating such limits have recently been summarized.^[47] Although 573 nm (or alternative extrapolated values) technically corresponds to the wavelength of the analogous transition in P_fPt , computations establish that the amount of platinum character in the frontier orbitals will be negligible.^[32] Hence, this should closely approximate the corresponding absorption of the polymer carbyne. UV/Vis data for most other series of polyynes X- $(C\equiv C)_nX$ yield similar values (550–570 nm).^[11a, 34b, 39, 43] The analogous pentafluorophenyl complexes give a slightly lower limit (527–492 nm).^[13]

These results constitute an experimental confirmation of a persistent, non-zero band gap for $P_{\text{t}}C_{\infty}P_{\text{t}}$ and hence carbyne. An absorption at 573 nm corresponds to a transition energy of 2.16 eV. However, it should be kept in mind that there remains another lower energy transition for PtC_xPt and PtC_oPt , but with a much smaller oscillator strength. Hence, the preceding treatment likely overestimates the true band gap and HOMO/LUMO energy difference. DFT computations on the model $[Pt(C\equiv C)]$ _nPt compounds noted above predict a HOMO/LUMO gap of 1.49 eV (832 nm) for $n=8$.^[13] Readers are referred to this study for further details regarding the electronic structure of these compounds.

Structures: The homologous series of structures $P_{t}C_{6}P_{t}$, $Pt'C_8Pt'$, $PtC_{10}Pt$, and $PtC_{12}Pt$ (Figure 3) complements the group of pentafluorophenyl C_6 , C_8 , C_{12} , and C_{16} analogues described earlier.^[13] Together with the series $P_{t}C_{4}Si$, $P_{t}C_{6}Si$, **PtC₈Si**, and **PtC₁₀Si** (two pentafluorophenyl analogues of which have also been structurally characterized),^[48] various effects of chain length upon structure can be examined. In general, the bond lengths and angles about platinum are unexceptional. However, there is a steady contraction of the $Pt-C \equiv$ bonds with chain length in both series. This can be reproduced computationally,[32] and detailed analyses show that this is due to increasing bond polarization, in line with the Brønsted acidity trends noted above. The chain becomes progressively more negative, and the platinum fragment positive, resulting in increased electrostatic attraction. Platinum/chain d– π^* backbonding plays no significant role.

Computations also predict a number of trends regarding the C \equiv C and \equiv C \equiv C \equiv bond lengths, such as increases in the former as the chain is lengthened or the midpoint is approached, and contractions in the latter.[32] However, the crystallographic data are usually not sufficiently accurate to verify these. The longest $C\equiv C$ bond in Tables 6 and 7 $(1.233(4)$ Å), and the shortest $\equiv C-C \equiv$ bond (1.342 Å) are not quite at the limits predicted for the model for $PfC_{26}Pf$ $(1.242, 1.330 \text{ Å})$.^[32] With regard to the other ligands, compu-

All of the new crystal structures show only a moderate degree of chain bending, as reflected by average bond angles in Tables 6 and 7, and further quantified with respect to other longer polyynes in a review.^[4] For **PtC**_r**Pt**, the chain conformations are S-shaped; with the less symmetrical PtC_rSi, bow conformations are found. Although some compounds exhibit p-tolyl/p-tolyl/p-tolyl stacking interactions involving the phosphine ligands (e.g., $P_{\text{t}}C_{6}Si$ in Figure 2), the tendency is not as great as with the pentafluorophenyl analogues, in which additional attractive phenomena are in play.[13] Packing diagrams analogous to Figure 4 that illustrate features involving neighboring chains noted above are provided in the supporting information and elsewhere.[25]

Conclusions

Viable syntheses of the diplatinum sp carbon chain complexes PtC₆Pt, PtC₈Pt, PtC₁₀Pt, PtC₁₂Pt, PtC₁₆Pt, PtC₂₀Pt, PtC₂₄Pt, and PtC₂₈Pt have been developed. Although the yields and selectivities of some reactions can likely still be improved, reasonable quantities of these compounds can be accessed. For molecules with even numbers of $C\equiv C$ linkages, the final step involves the oxidative homocoupling of **PtC**_{x/2}H. With PtC₂₄Pt and PtC₂₈Pt, it is critical to generate this labile precursor in the presence of the oxidizing agent (procedure C, Scheme 4). Although this methodology may eventually be limited by the competitive decomposition of **PtC**_{x/2}H, there is good reason to believe that it can be extended significantly beyond $P₁₄H$.

The thermal stabilities of these complexes often exceed 200 °C. PtC₂₄Pt and PtC₂₈Pt represent the first tetracosadodecayne and octacosatetradecayne that can be isolated in quantity and kept for extended periods at room temperature. There is no indication that any type of stability boundary has been reached. In contrast, organic polyynes with comparable (and often much lower) chain lengths rapidly decompose at room temperature, at least in the series investigated to date.

The spectroscopic and structural properties of PtC_rPt establish a number of interesting chain-length effects. These are becoming increasingly well defined for polyynes. Hence, the value of future synthetic studies may increasingly lie more in the direction of applications, for example, macroscopic unsaturated connectors. Although polyynes are intrinsically reactive, they can also, at least when capped with platinum endgroups, be sterically shielded in much the manner of insulated household wire.^[14] Efforts to elaborate the compounds reported herein to more complex assemblies,^[49] as well as still longer C_x species, will be reported in due course.

Experimental Section

General: All reactions were conducted under dry nitrogen atmospheres by using conventional Schlenk techniques, but workups of platinum complexes were carried out in air. Solvents were treated as follows: THF, Et₂O, pentane, and hexane were distilled from Na/benzophenone; acetone was distilled from CaCl₂; CH₂Cl₂ was distilled from K₂CO₃; MeOH was distilled from Mg.

The following chemicals were used as purchased: p-tolMgBr (Aldrich, 1.0 m in Et₂O), acetyl chloride (generic label, technical), $P(p$ -tol)₃ $(\geq 97\%$, Fluka), HNEt₂ ($\geq 99.5\%$, Fluka), HC=CSiEt₃ (Aldrich), TMEDA (99%, Janssen), $nBu_4N^+F^-$ (Aldrich, 1.0m in THF/5 wt% H₂O), ClSiMe₃ (Lancaster), *nBuLi* (1.6m in hexane, Acros), ClSiEt₃ (Lancaster), alumina for chromatography (neutral, Fluka). Other materials not listed were used as received from common commercial sources. NMR spectra were obtained on modern 300–400 MHz spectrometers. IR and mass spectra were recorded on ASI React-IR 1000 and Micromass Zabspec instruments, respectively. DSC and TGA data were obtained with a Mettler-Toledo DSC-821 instrument.^[31] Microanalyses were conducted on a Carlo Erba EA1110 instrument (in house) or by Atlantic Microlab.

 $[Pt(cod)(p-tol)_2]$:^[18] A Schlenk flask was charged with $[PtCl_2(cod)]$ $(2.005 \text{ g}, 5.35 \text{ mmol})^{[17]}$ and Et₂O (30 mL). Then p-tolMgBr (1.0m in $Et₂O$; 13.4 mL, 13.4 mmol) was added with stirring. After 16 h, cold saturated aqueous $NH₄Cl$ (25 mL) was added. The Et₂O phase was separated. The aqueous phase was extracted with Et_2O (3×50 mL). The combined Et₂O phases were dried $(MgSO₄)$ and filtered through pads of Celite (1 cm) and decolorizing carbon (2 cm) . The Et₂O was removed by rotary evaporation. The residue was suspended in EtOH (25 mL), collected by filtration, and dried by oil pump vacuum to give $[Pt(cod)(p-tol)_2]$ as a white solid (1.685 g, 3.46 mmol, 65%). ¹H NMR (CDCl₃): δ = 7.11 (d, ³J- $(H,H) = 7.8 \text{ Hz}, \frac{3J(H,Pt)}{9.3 \text{ Hz}}, 4H; o \text{ to Pt}, 6.83 \text{ (d, } \frac{3J(H,H)}{4}$ 7.3 Hz, 4H; *m* to Pt), 5.09 (s, ² $J(H, Pt) = 37.8$ Hz, 4H; CH₂CH=), 2.50– 2.37 (m, 8H; CH₂), 2.16 ppm (s, 6H; CH₃).

[PtCl(cod)(p-tol)]:^[19] A Schlenk flask was charged with $[Pt(cod)(p-tol)_2]$ $(1.00 \text{ g}, 2.06 \text{ mmol})$, CH_2Cl_2 (15 mL) , and MeOH (15 mL) . Acetyl chloride (0.24 mL, 3.4 mmol) was added with stirring. After 0.5 h, the solvent was removed by oil pump vacuum. The residue was suspended in MeOH (15 mL), collected by filtration, and dried by oil pump vacuum to give [PtCl(cod)(p-tol)] as a white solid (0.83 g, 1.9 mmol, 94%). ¹H NMR (CDCl₃): $\delta = 7.09$ (d, $\frac{3J(H,H)}{8.1 \text{ Hz}} = 8.1 \text{ Hz}, \frac{3J(H,Pt)}{8.1 \text{ Hz}} = 40.5 \text{ Hz}, 2 \text{ H}; o \text{ to Pt}$), 6.91 (d, $\frac{3J(H,H)}{2}$ = 7.6 Hz, 2H; m to Pt), 5.78 (m, $\frac{2J(H,Pt)}{2}$ = 24.4 Hz, 2H; CH₂CH=), 4.58 (m, ²J(H,Pt) = 64.2 Hz, 2H; CH₂CH=), 2.67–2.29 (m, 8H; CH₂), 2.23 ppm (s, 3H; CH₃).

trans-[PtCl(p-tol){P(p-tol)₃}₂] (PtCl): A Schlenk flask was charged with [PtCl(cod)(p-tol)] (1.00 g, 2.33 mmol), $P(p$ -tol)₃ (1.49 g, 4.89 mmol), and $CH₂Cl₂$ (30 mL). The mixture was stirred for 16 h. The solvent was removed by oil pump vacuum. The residue was suspended in MeOH (10 mL), collected by filtration, washed with hexane $(2 \times 3$ mL), and dried by oil pump vacuum to give PtCl as a white solid (1.90 g, 1.91 mmol, 94%). Crystallization (CHCl3/MeOH layer–layer diffusion) gave small white needles. M.p. 274 °C (decomp); elemental analysis calcd $(\%)$ for $C_{49}H_{49}CIP_2Pt$: C 67.44, H 5.34; found: C 67.10, H 5.23; ¹H NMR (CDCl₃): δ = 7.38–7.34 (m, 12H; o to P), 7.00 (d, ³J(H,H) = 7.6 Hz, .12H; *m* to P), 6.40 (d, $\frac{3J(H,H)}{8} = 8.1$ Hz, 2H; *o* to Pt), 5.90 (d, $\frac{3J(H,H)}{8} =$ 7.8 Hz, 2H; *m* to Pt), 2.29 (s, 18H; CH₃), 1.89 ppm (s, 3H; CH₃); ¹³C{¹H} NMR (CDCl₃): δ =139.6 (s, p to P), 136.8 (s, o to Pt), 135.1 (s, i to Pt), 134.7 (virtual t, $^2J(C,\mathbf{P})=6.1$ Hz, σ to P),^[20] 129.3 (s, p to Pt), 128.4 (s, m to P), 128.4 (s, *m* to Pt), 127.9 (virtual t, $^{1}J(C,\mathbf{P}) = 26.0$ Hz, *i* to P),^[20] 21.4 (s, CH₃, p to P), 20.4 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃): δ = 22.9 (s, ¹J(P,Pt) = 3134 Hz).^[50] MS:^[51] m/z (%): 894 (34) [Pt(p-tol){P(ptol)₃ $_{2}$]⁺, 803 (100) [Pt{P(p-tol)₃}₂]⁺, 497 (18) [Pt{P(p-tol)₃}]⁺, 405 ppm (27) $[Pt{P(p-tol)}_2]$, no other peaks above 400 of $> 5\%$.

trans-[Pt(p-tol){P(p-tol)₃}₂{(C=C)₂H}] (PtC₄H): A Schlenk flask was charged with PtCl (1.00 g, 1.08 mmol), CuI (0.025 g, 0.13 mmol), and HNEt₂ (50 mL), and cooled to -45°C (CO₂/CH₃CN). Then H(C≡C)₂H $(2.14 \text{ m in THF}, 13.6 \text{ mL}, 29.1 \text{ mmol})^{[21]}$ was added with stirring. After 1 h,

the cold bath was removed. After 1 h, the solvent was removed by rotary evaporation. The residue was extracted with toluene $(4 \times 25 \text{ mL})$. The extracts were filtered through an alumina column $(3 \times 7 \text{ cm})$. The toluene was removed by rotary evaporation. The residue was suspended in MeOH (10 mL), collected by filtration, and dried by oil pump vacuum to give $P₄H$ as a pale tan powder (0.83 g, 0.88 mmol, 82%). The sample slightly darkened at 155°C, slowly turned black with further heating, and liquefied at 180 °C (capillary). DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{53}H_{50}P_2Pt$: C 67.43, H 5.34; found (two samples): C 67.34/67.10, H 5.43/5.23; ¹H NMR (CDCl₃): δ = 7.36–7.31 (m, 12H; σ to P), 7.01 (d, $\frac{3J(H,H)}{2}$ = 7.8 Hz, 12H; m to P), 6.28 (d, $\frac{3J(H,H)}{2}$ = 7.8 Hz, 2H; o to Pt), 6.02 (d, ³J(H,H) = 7.6 Hz, 2H; m to Pt), 2.30 (s, 18H; CH₃), 1.92 (s, 3H; CH₃), 1.41 ppm (s, 1H; \equiv CH); ¹³C{¹H} NMR (CDCl₃): δ = 150.5 (t, $^2J(C,P)$ = 10.3 Hz, *i* to Pt), 139.7 (s, *p* to P), 138.8 (s, *o* to Pt), 134.6 (virtual t, ² $J(C, P) = 6.1$ Hz, o to P),^[20] 129.2 (s, p to Pt), 129.0 (s, m to P), 128.3 (virtual t, $^1J(C,P) = 28.9$ Hz, *i* to P),^[20] 128.1 (s, *m* to Pt), 110.6 (t, ${}^{2}J(C,\mathbf{P}) = 13.8 \text{ Hz}, {}^{1}J(C,\mathbf{P}t) = 650 \text{ Hz}, {}^{[50]} \text{ Pt} \cdot \text{C} = C$), 95.3 (s, ${}^{2}J$ $(C, Pt) = 225$ Hz,^[50] PtC=C), 72.9 (s, C=CH), 58.1 (s, C=CH), 21.3 (s, CH₃, p to P), 20.6 ppm (s, CH₃, p to Pt); ¹³C NMR (CDCl₃, no ¹H decoupling): δ = 151.2 (t, ²J(C,P) = 10.3 Hz, *i* to Pt), 140.4–140.3 (m, *p* to P), 139.5 (dd, ${}^{1}J(C,H) = 160.9$ Hz, ${}^{2}J(C,H) = 6.9$ Hz, o to Pt), 135.3 (dd, ${}^{1}J(C,H) =$ 160.9 Hz, $^{2}J(C,H)$ = 6.9 Hz, o to P), 129.9 (s, p to Pt), 129.0 (dt, $^{1}J(C,H)$ = 157.9 Hz, $^{2}J(C,H)$ = 10.6 Hz, m to P), 128.8 (m, i to P), 128.3 (m, m to Pt), 111.2 (t, ${}^{2}J(C,\mathbf{P}) = 13.8 \text{ Hz}, {}^{1}J(C,\mathbf{P}t) = 650 \text{ Hz},$ ${}^{[50]}$ PtC=C), 96.0 (d, ${}^{3}J$ - (C,H) = 5.2 Hz, ² $J(C,Pt)$ = 225 Hz,^[50] PtC=C), 73.6 (d, ² $J(C,H)$ = 50.9 Hz, C=CH), 58.8 (d, 1 J(C,H) = 249.6 Hz, C=CH), 22.0 (qt, 1 J(C,H) = 125.7 Hz, $3J(C,H) = 4.2 \text{ Hz}$, CH₃, p to P), 21.2 ppm (qt, $1J(C,H) = 125.0 \text{ Hz}$, $3J$ - (C,H) = 4.2 Hz, CH_3 , p to Pt); ³¹P{¹H} NMR (CDCl₃): δ = 19.4 ppm (s, ¹J- $(P,Pt) = 2939 \text{ Hz}$;^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 944 (8) $[PtC_4H]^+$, 894 (30) $[Pt(p-tol)]P(p-tol)_{3}]_2]^+$, 803 (100) $[Pt[P (p$ -tol)₃ $]_2$ ⁺, 497 (24) [Pt{P(p-tol)₃}]⁺, 405 (34) [Pt{P(p-tol)₂}]⁺, no other peaks above 400 of $>7\%$.

trans-[Pt(p-tol){P(p-tol)₃}₂{(C=C)₃SiEt₃}] (PtC₆Si): A three-necked flask was charged with $PtC₄H$ (0.330 g, 0.350 mmol), HC=CSiEt₃ (0.566 g, 11.2 mmol), and acetone (40 mL), and fitted with a gas dispersion tube and a condenser.^[52] A Schlenk flask was charged with CuCl $(0.200 g,$ 2.04 mmol) and acetone (20 mL), and TMEDA (0.200 mL, 1.33 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then $O₂$ was bubbled through the three-necked flask with stirring. After about 5 min, the blue supernatant was added in portions. After 1 h, the solvent was removed by rotary evaporation. The residue was extracted with hexane $(3 \times 10 \text{ mL})$ and then toluene $(3 \times 25 \text{ mL})$. The extracts were passed in sequence through an alumina column $(2 \times 7 \text{ cm})$. The solvent was removed from the toluene extracts by rotary evaporation. The residue was subjected to chromatography on a silica gel column $(2.5 \times 25 \text{ cm}, \text{ packed in hexane}, \text{eluted with})$ 15:85 v/v $CH_2Cl_2/hexane$). The solvent was removed from the productcontaining fraction by rotary evaporation and dried by oil pump vacuum to give PtC₆Si as a yellow solid (0.299 g, 0.268 mmol, 77%). DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{61}H_{64}P_2PtSi$: C 67.70, H 5.96; found: C 67.24, H 5.95; ¹H NMR (CDCl₃): δ = 7.32–7.27 (m, 12H; *o* to P), 7.00 (d, $\frac{3J(H,H)}{27.7 \text{ Hz}}$, 12H; *m* to P), 6.26 (d, $\frac{3J(H,H)}{28.3 \text{ Hz}}$, 2H; o to Pt), 6.04 (d, ³J(H,H) = 7.7 Hz, 2H; m to Pt), 2.31 (s, 18H; CH₃), 1.92 (s, 3H; CH₃), 0.91 (t, ³ $J(H,H) = 8.0$ Hz, 9H; CH₂CH₃), 0.51 ppm (q, ³J(H,H)=7.9 Hz, 6H; CH₂CH₃); ¹³C{¹H} NMR (CDCl₃): δ =150.2 (t, ²J- $(C,P) = 9.9$ Hz, *i* to Pt), 139.9 (s, *p* to P), 138.7 (s, *o* to Pt), 134.5 (virtual t, $^{2}J(C,\mathbf{P}) = 6.9 \text{ Hz}, \space o \text{ to } \mathbf{P}$), $^{[20]}$ 129.3 (s, p to Pt), 128.4 (virtual t, $^{2}J(C,\mathbf{P}) =$ 5.4 Hz, *m* to P),^[20] 127.8 (virtual t, ¹*J*(C,P) = 20.1 Hz, *i* to P),^[20] 127.5 (s, *m*) to Pt), 117.5 (t, ²J(C,P) = 14.8 Hz, ¹J(C,Pt) = 838 Hz,^[50] PtC=C), 95.8 (s, ²J- $(C, Pt) = 212$ Hz,^[50] PtC=C), 91.8 (s, C=CSi), 79.1 (s, C=CSi), 66.6 (s, PtC= CC=C), 54.9 (s, PtC=CC=C), 21.3 (s, CH₃, p to P), 20.6 (s, CH₃, p to Pt), 7.4 (s, 3CH₂CH₃), 4.4 ppm (s, 3CH₂CH₃); ³¹P{¹H} NMR (CDCl₃): δ = 19.5 ppm (s, $^{1}J(P,Pt) = 2921 \text{ Hz}$);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 1081 (4) $[PtC_6Si]^+$, 990 (4) $[PtC_6SiEt_3[P(p$ tol)₃ $]_2$ ⁺, 894 (24) [Pt(p-tol){P(p-tol)₃}₂]⁺, 803 (100) [Pt{P(p-tol)₃}₂]⁺, 497 (20) $[Pt[P(p-tol)_3]]^+$, 405 (27) $[Pt[P(p-tol)_2]]^+$, no other peaks above 400 of $>7\%$.

trans- $[Pt(p-tol)]{P(p-tol)}$ ₃ $[(C\equiv C)$ ₃ $H]$ ($PtC₆H)$: A Schlenk flask was charged with PfC_6Si (0.400 g, 0.370 mmol) and THF (50 mL). Then wet

Polyynes **FULL PAPER**

 $nBu_4N^+F^-$ (1.0m in THF/5 wt% H₂O; 0.050 mL, 0.050 mmol) was added with stirring. After 0.5 h, the mixture was poured into water (40 mL) and extracted with CH_2Cl_2 (3 × 30 mL). The combined extracts were dried (MgSO4), and the solvent was removed by rotary evaporation while cooling the sample in an ice bath. The residue was extracted with hexane $(3 \times$ 10 mL), which was passed through a silica gel column $(2 \times 15 \text{ cm})$ and discarded. The residue was extracted with CH₂Cl₂ (3×2 mL), which was passed through the same column using $10:90$ v/v CH₂Cl₂/hexane. The solvent was removed by oil pump vacuum at $0^{\circ}C$ to give **PtC₆H** as a white solid (0.301 g, 0.311 mmol, 84%), m.p. 135 °C (decomp). This compound darkens at room temperature within a few minutes, but can be stored without discolorization at -24° C for several days. ¹H NMR (CDCl₃): δ = 7.31–7.27 (m, 12H; o to P), 7.01 (d, $\frac{3J(H,H)}{=}$ 7.8 Hz, 12H; m to P), 6.27 (d, $3J(H,H) = 7.8$ Hz, 2H; o to Pt), 6.04 (d, $3J(H,H) = 7.6$ Hz, 2H; m to Pt), 2.31 (s, 18H; CH₃), 1.93 (s, 3H; CH₃), 1.79 ppm (s, 1H; \equiv CH); ¹³C{¹H} NMR (CDCl₃): δ = 150.6 (t, ²J(C,P) = 10 Hz, *i* to Pt), 140.6 (s, *p* to P), 139.4 (s, σ to Pt), 135.2 (virtual t, $^2J(C,\mathbf{P}) = 6.2$ Hz, σ to P),^[20] 130.1 $(s, p \text{ to Pt})$, 129.0 (virtual t, ³ $J(C, P) = 5.2$ Hz, *m* to P),^[20] 128.9 (s, *m* to Pt), 128.4 (virtual t, ${}^{1}J(C,\mathbf{P}) = 29.2$ Hz, *i* to P),^[20] 117.4 (t, ${}^{2}J(C,\mathbf{P}) = 14.5$ Hz, ${}^{1}J$ - $(C, Pt) = 875$ Hz,^[50] PtC=C), 96.0 (s, ² $J(C, Pt) = 238$ Hz,^[50] PtC=C), 71.5 (s, C=CH), 66.0 (s, PtC=CC=C), 64.7 (s, C=CH), 54.8 (s, PtC=CC=C), 22.0 (s, CH₃, p to P), 21.2 ppm (s, CH₃, p to Pt); ¹³C NMR (CDCl₃, no ¹H decoupling): $\delta = 150.6$ (t, ²J(C,P) = 10.0 Hz, *i* to Pt), 140.7–140.5 (m, *p* to P), 139.5 (dd, $^1J(C,H) = 153.2$ Hz, $^2J(C,H) = 9.1$ Hz, o to Pt), 135.2 (dd, 1J - $(C,H) = 160.9$ Hz, $\frac{2J(C,H)}{6.1} = 6.1$ Hz, σ to P), 130.1–130.0 (m, p to Pt), 129.0–129.6 (m, m to P), 128.7–128.6 (m, m to Pt), 128.4 (m, i to P), 117.2 $(t, \ {}^{2}J(C,P)=14.5 \text{ Hz}, \ {}^{1}J(C,Pt)=875 \text{ Hz}, {}^{[50]} \text{ Pt} \text{C} \equiv C), \; 96.1 \text{ (s, } {}^{2}J(C,Pt)=$ 238 Hz,^[50] PtC=C), 71.5 (d, ²J(C,H)=51.6 Hz, C=CH), 66.0 (s, PtC=CC= C), 64.7 (d, $^1J(C,H) = 255.0$ Hz, C \equiv CH), 54.8 (d, $^3J(C,H) = 6.8$ Hz, PtC \equiv CC=C), 22.0 (qt, $^{1}J(C,H) = 126.0 \text{ Hz}$, $^{3}J(C,H) = 4.5 \text{ Hz}$, CH₃, p to P), 21.2 ppm (qt, ¹J(C,H)=124.5 Hz, ³J(C,H)=4.9 Hz, CH₃, *p* to Pt); ³¹P{¹H} NMR (CDCl₃): $\delta = 19.1$ ppm (s, ¹J(P,Pt) = 2906 Hz).^[50] IR data: Table 2.

trans-[Pt(p-tol){P(p-tol)₃}₂{(C=C)₄SiEt₃}] (PtC₈Si): A Schlenk flask was charged with PtC_6Si (0.216 g, 0.200 mmol) and THF (25 mL). Then wet $nBu_4N^+F^-$ (1.0m in THF/5 wt% H₂O, 0.025 mL, 0.025 mmol) was added with stirring. After 0.5 h (TLC showed no reactant remaining), the mixture was poured into water (20 mL) and extracted with CH_2Cl_2 (3 \times 20 mL). The combined extracts were dried (MgSO₄). The solvent was removed by rotary evaporation while cooling the sample in an ice bath. The residue was extracted with hexane $(3 \times 10 \text{ mL})$, which was passed through a silica gel column $(3 \times 15 \text{ cm})$ and discarded. The residue was subjected to chromatography on the same column using 15:85 v/v CH₂Cl₂/hexane. The solvent was removed from the eluate by rotary evaporation (ice bath). The residue was dissolved in acetone (30 mL) and transferred to a three-necked flask, which was fitted with a gas dispersion tube and a condenser.^[52] Then HC=CSiEt₃ (0.556 g, 11.21 mmol) was added. A Schlenk flask was charged with CuCl (0.200 g, 0.204 mmol) and acetone (20 mL), and TMEDA (0.200 mL, 1.33 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then O_2 was bubbled through the three-necked flask with stirring. After about 5 min, the blue supernatant was added in portions. After 1.5 h, the solvent was removed by rotary evaporation. The residue was extracted with hexane and then toluene. The extracts were passed in sequence through an alumina column $(2 \times 7 \text{ cm})$. The solvent was removed from the toluene extracts by rotary evaporation. The residue was subjected to chromatography on a silica gel column $(3 \times$ 30 cm, packed with hexane). Elution with $15:85$ v/v CH₂Cl₂/hexane gave **PtC₈Si**, and 30:70 v/v CH₂Cl₂/hexane gave **PtC₁₂Pt**. The solvent was removed from each band by oil pump vacuum to give PfC_8Si as a yellow solid (0.050 g, 0.045 mmol, 23%), and $P{tC_{12}}P{t}$ as a bright orange powder described below (0.073 g, 0.038 mmol, 38%). DSC/TGA, Table 1; elemental analysis calcd (%) for $C_{63}H_{64}P_2P_tSi$: C 68.40, H 5.83; found: C 67.87, H 5.82; ¹H NMR (CDCl₃): δ = 7.31–7.26 (m, 12 H; o to P), 7.02 (d, $3J(H,H)$ = 7.7 Hz, 12H; m to P), 6.16 (d, $3J(H,H)$ = 7.7 Hz, 2H; o to Pt), 6.07 (d, ${}^{3}J(H,H)$ = 7.7 Hz, 2H; m to Pt), 2.32 (s, 18H; CH₃), 1.94 (s, 3H; CH₃), 0.97 (t, ³ $J(H,H) = 8.0$ Hz, 9H; CH₂CH₃), 0.58 ppm (q, ³ $J(H,H) =$ 8.3 Hz, 6H; CH₂CH₃); ¹³C[¹H] NMR (CDCl₃): $\delta = 149.5$ (t, ²J(C,P) = 9.9 Hz, *i* to Pt), 140.0 (s, *p* to P), 138.7 (s, *o* to Pt), 134.5 (virtual t, ^{2}J - $(C,P)=6.1$ Hz, σ to P),^[20] 129.5 (s, p to Pt), 128.4 (virtual t, $^{3}J(C,P)=$

A EUROPEAN JOURNAL

5.3 Hz, *m* to P),^[20] 127.7 (s, *m* to Pt), 127.6 (virtual t, ¹J(C,P) = 29.0 Hz, *i* to P),^[20] 120.4 (t, ² $J(C, P) = 13.6$ Hz, PtC $\equiv C$), 95.6 (s, PtC $\equiv C$), 90.6 (s, C \equiv CSi), 81.9 (s, C=CSi), 67.0, 64.8, 58.4, 55.1, $(4 \text{ s}, \text{PtC} \equiv \text{C} \equiv \text{C} \equiv \text{C})$, 21.4 (s, CH_3 , p to P), 20.5 (s, CH₃, p to Pt), 7.3 (s, CH₂CH₃), 4.2 ppm (s, CH_2CH_3); ³¹P{¹H} NMR (CDCl₃): $\delta = 19.2$ ppm (s, ¹J(P,Pt) = 2902 Hz);^[50] IR data: Table 2: UV/Vis data: Table 4: MS ^[51] mlz (%): 1105 (2) $[PtC_8Si]^+, 894 (12) [Pt(p-tol)(P(p-tol)_3]_2]^+), 803 (100) [Pt(P(p-tol)_3]_2]^+,$ 497 (36) $[Pt[P(p-tol)_3]]^+, 405$ (62) $[Pt[P(p-tol)_2]]^+.$

 $trans\text{-}[Pt(p-tol)]\{P(p-tol)\}_3]_2\{(\text{C}\text{ }\equiv\text{C})_6\text{SiEt}_3\}]$ (PtC₁₂Si): A three-necked flask was charged with PtC_8Si (0.150 g, 0.136 mmol) and acetone (35 mL), and fitted with a gas dispersion tube and a condenser.^[52] Then wet $nBu_4N^+F^ (1.0\,\text{m}$ in THF/5 wt% H₂O, 0.050 mL, 0.050 mmol) was added with stirring. After 0.5 h (TLC showed no reactant remaining), Me₃SiCl (0.025 mL, 0.20 mmol) was added; after 10 min, $H(C=C)_{2}SEt_{3}$ (0.447 g, 2.72 mmol) was added. A Schlenk flask was charged with CuCl (0.218 g, 2.21 mmol) and acetone (10 mL), and TMEDA (0.200 mL, 1.33 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then $O₂$ was bubbled through the three-necked flask with stirring and the blue supernatant was added in portions. After 1.5 h, the solvent was removed by rotary evaporation. The residue was extracted with hexane $(3 \times 30 \text{ mL})$ and toluene $(3 \times$ 40 mL). The extracts were passed in sequence through an alumina column $(2 \times 10 \text{ cm})$. The solvent was removed from the toluene extracts by rotary evaporation and the residue was subjected to chromatography on a silica gel column $(3.5 \times 40 \text{ cm}, \text{ packed in hexane}, \text{eluted with } 15:85)$ v/v CH₂Cl₂/hexane). The solvent was removed from the product-containing fractions by rotary evaporation and oil pump vacuum to give $P_{t}C_{t}S_{t}$ as an orange solid (0.066 g, 0.057 mmol, 42%). DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{67}H_{64}P_2PtSi$: C 69.71, H 5.59; found: C 69.35, H 5.73. ¹H NMR (CDCl₃): δ = 7.29–7.24 (m, 12H; o to P), 7.02 (d, $3J(H,H) = 7.8$ Hz, 12H; *m* to P), 6.26 (d, $3J(H,H) = 7.8$ Hz, 2H; *o* to Pt), 6.07 (d, $\frac{3J(H,H)}{27.7 \text{ Hz}}$, 2H; *m* to Pt), 2.32 (s, 18H; CH₃), 1.94 (s, 3H; CH₃), 0.97 (t, ³ $J(H,H) = 7.9$ Hz, 9H; CH₂CH₃), 0.58 ppm (q, ³ $J(H,H) =$ 7.9 Hz, 6H; CH₂CH₃); ¹³C[¹H] NMR (CDCl₃): $\delta = 149.2$ (t, ²J(C,P) = 10.2 Hz, *i* to Pt), 140.1 (s, *p* to P), 138.6 (s, *o* to Pt), 134.5 (virtual t, ²*J*- $(C,P)=6.0$ Hz, σ to P),^[20] 129.7 (s, p to Pt), 128.5 (virtual t, $^{3}J(C,P)=$ 5.5 Hz, *m* to P),^[20] 127.8 (s, *m* to Pt), 127.5 (virtual t, ¹J(C,P) = 29.6 Hz, *i* to P),^[20] 123.7 (t, ²J(C,P) = 13.9 Hz, PtC=C), 95.3 (s, PtC=C), 89.4 (s, C= CSi), 85.5 (s, C=CSi), 67.4, 66.0, 64.4, 62.8, 60.9, 60.1, 58.9, 55.3 (8 s, PtC= CC=CC=CC=C), 21.4 (s, CH₃, p to P), 20.5 (s, CH₃, p to Pt), 7.3 (s, CH₂CH₃), 4.2 ppm (s, CH₂CH₃); ³¹P{¹H} NMR (CDCl₃): δ = 19.0 ppm (s, $1J(P,Pt) = 2892 \text{ Hz};$ 501 IR data: Table 2; UV/Vis data: Table 4; MS: 511 m/z (%): 1153 (2) $[PtC₁₂Si]⁺$, 894 (20) $[Pt(p-tol){P(p-tol)}₃]₂]⁺$), 803 (100) $[Pt[P(p-tol)_3]_2]^+, 497 (36) [Pt[P(p-tol)_3]]^+, 405 (58) [Pt[P(p-tol)_2]]^+.$

Reaction of PtC₄H and H(C \equiv C)₂SiEt₃ (PtC₈Si, PtC₁₂Si, PtC₁₆Si): A three-necked flask was charged with $PtC₄H$ (0.260 g, 0.275 mmol) and acetone (40 mL), and fitted with a gas dispersion tube and a condenser.^[52] A Schlenk flask was charged with CuCl (0.200 g, 0.204 mmol) and acetone (20 mL), and TMEDA (0.400 mL, 2.67 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then O_2 was bubbled through the three-necked flask with stirring. After about 5 min, $H(C=C)_{2}SiEt_{3}$ (0.905 g, 5.51 mmol) was added, followed by the blue supernatant in portions. After 1.5 h, the solvent was removed by rotary evaporation. The residue was extracted first with hexane $(3 \times 25 \text{ mL})$ and then with toluene $(3 \times 30 \text{ mL})$. The extracts were passed in sequence through an alumina column $(2 \times 7 \text{ cm})$. The solvent was removed from the toluene extracts by rotary evaporation. The residue was subjected to chromatography on a silica gel column $(3.5 \times$ 40 cm, packed in hexane, eluted with $15:85$ v/v CH₂Cl₂/hexane). The solvent was removed from the product-containing fractions by rotary evaporation and oil pump vacuum to give **PtC**₁₆Si as a deep red solid (0.004 g, 0.003 mmol, 1%), **PtC**₁₂Si as an orange solid (0.102 g, 0.0880 mmol, 30%), and PtC_8Si as a yellow solid (0.088 g, 0.080 mmol, 29%). Data for **PtC**₁₆Si: m.p. 104 °C (decomp); elemental analysis calcd (%) for $C_{71}H_{64}P_2PtSi$: C 70.86, H 5.44; found: C 69.82, H 5.62; ¹H NMR (CDCl₃): δ = 7.29–7.24 (m, 12H; o to P), 7.02 (d, ³J(H,H) = 7.7 Hz, 12H; m to P), 6.25 (d, $\frac{3J(H,H)}{7.7 \text{ Hz}}$, 2H; o to Pt), 6.07 (d, $\frac{3J(H,H)}{7.6 \text{ Hz}}$, 2H; m to Pt), 2.32 (s, 18H; CH₃), 1.94 (s, 3H; CH₃), 0.97 (t, ³ $J(H,H) = 8.4$ Hz, 9H; CH₂CH₃), 0.62 ppm (q, ³J(H,H)=7.9 Hz, 6H; CH₂CH₃); ¹³C{¹H}

NMR (CDCl₃): $\delta = 149.1$ (t, ²J(C,P) = 9.9 Hz, *i* to Pt), 140.2 (s, *p* to P), 138.6 (s, σ to Pt), 134.5 (virtual t, ²J(C,P)=6.1 Hz, σ to P),^[20] 129.8 (s, p to Pt), 128.5 (virtual t, ${}^{3}J(C,\mathbf{P}) = 5.3$ Hz, m to P), ${}^{[20]}$ 127.8 (s, m to Pt), 127.4 (virtual t, ${}^{1}J(C,\mathbf{P}) = 30.3 \text{ Hz}$, *i* to P),^[20] 125.2 (t, ${}^{2}J(C,\mathbf{P}) = 14.5 \text{ Hz}$, PtC=C), 95.1 (s, PtC=C), 88.9 (s, C=CSi), 87.1 (s, C=CSi), 67.9, 66.6, 65.0, 63.9, 63.1, 62.1, 62.0 (two coincident signals), 61.2, 60.1, 58.8, 55.4 (11 s, PtC=CC=CC=CC=CC=CC=CC=C), 21.4 (s, CH₃, p to P), 20.5 (s, CH₃, p to Pt), 7.3 (s, CH₂CH₃), 4.0 ppm (s, CH₂CH₃); ³¹P{¹H} NMR (CDCl₃): δ = 19.0 ppm (s, $^{1}J(P,Pt) = 2889 \text{ Hz}$);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 1201 (1) $[PtC_{16}Si]^+$, 894 (35) $[Pt(p-tol)(P(p-tol))$ tol)₃}₂]⁺, 803 (100) [Pt{P(*p*-tol)₃}₂]⁺, 497 (36) [Pt{P(*p*-tol)₃}]⁺, 405 (54) $[Pt{P(p-tol)}_2]$ ⁺.

Reaction of PtC₆H and H(C \equiv C)₂SiEt₃ (PtC₁₀Si, PtC₁₄Si): A three-necked flask was charged with PfC_6Si (0.216 g, 0.200 mmol) and acetone (40 mL), and fitted with a gas dispersion tube and a condenser.[52] Then wet $nBu_4N^+F^-$ (1.0m in THF/5 wt% H₂O, 0.050 mL, 0.050 mmol) was added with stirring. After 0.5 h (TLC showed no reactant remaining), Me-SiCl $(0.025 \text{ mL}$, 0.20 mmol) was added; after 10 min, $H(\text{CEC})$ -SiEt₂ (0.657 g, 4.00 mmol) was added. A Schlenk flask was charged with CuCl (0.218 g, 2.21 mmol) and acetone (20 mL), and TMEDA (0.200 mL, 1.33 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then O_2 was bubbled through the three-necked flask with stirring. After about 5 min, the blue supernatant was added in portions. After 1.5 h, the solvent was removed by rotary evaporation. The residue was extracted with hexane $(3 \times$ 30 mL) and toluene $(3 \times 40 \text{ mL})$. The extracts were passed in sequence through an alumina column $(2 \times 10 \text{ cm})$. The solvent was removed from toluene extracts by rotary evaporation and the residue was subjected to chromatography on a silica gel column $(3.5 \times 40 \text{ cm}, \text{ packed in hexane},$ eluted with $15:85$ v/v CH₂Cl₂/hexane). The solvent was removed from the product-containing fractions by rotary evaporation and oil pump vacuum to give PtC_{14}Si as a red solid described below (0.016 g, 0.014 mmol, 7%) and PtC₁₀Si as an orange solid $(0.134 \text{ g}, 0.118 \text{ mmol}, 59\%)$. Data for **PtC**₁₀Si: DSC/TGA, Table 1; elemental analysis calcd $(\%)$ for $C_{65}H_{64}P_2PtSi$: C 69.07, H 5.71; found: C 68.75, H 5.80; ¹H NMR (CDCl₃): δ = 7.30–7.25 (m, 12H; *o* to P), 7.02 (d, ³J(H,H) = 7.7 Hz, 12H; *m* to P), 6.26 (d, $\frac{3J(H,H)}{2}$ =7.9 Hz, 2H; o to Pt), 6.07 (d, $\frac{3J(H,H)}{2}$ =7.7 Hz, 2H; m to Pt), 2.32 (s, 18H; CH₃), 1.94 (s, 3H; CH₃), 0.95 (t, ³J(H,H)=7.9 Hz, 9H; CH₂CH₃), 0.59 ppm (q, ³J(H,H)=7.8 Hz, 6H; CH₂CH₃); ¹³C{¹H} NMR (CDCl₃): $\delta = 149.4$ (t, ²J(C,P) = 10.2 Hz, *i* to Pt), 140.1 (s, *p* to P), 138.6 (s, o to Pt), 134.5 (virtual t, $^2J(C,P)$ = 6.0 Hz, o to P),^[20] 129.6 (s, p to Pt), 128.3 (virtual t, ${}^{3}J(C,P)$ = 5.1 Hz, m to P),^[20] 128.1 (s, m to Pt), 127.5 (virtual t, $^{1}J(C,\mathbf{P}) = 27.3 \text{ Hz}$, *i* to P),^[20] 122.4 (t, $^{2}J(C,\mathbf{P}) = 14.8 \text{ Hz}$, PtC=C), 95.4 (s, PtC=C), 89.8 (s, C=CSi), 84.1 (s, C=CSi), 67.1, 65.6, 63.5, 59.7, 58.7, 55.3 (6 s, PtC=CC=CC=CC=C), 21.4 (s, CH₃, p to P), 20.5 (s, CH_3 , p to Pt), 7.3 (s, CH_2CH_3), 4.1 ppm (s, CH_2CH_3); ³¹P{¹H} NMR (CDCl₃): $\delta = 19.1$ ppm (s, ¹J(P,Pt) = 2898 Hz);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 1129 (<1) $[PtC_{10}Si]^+$, 894 (22) $[Pt(p$ tol) $\{P(p\text{-tol})_3\}_2$ ⁺, 803 (100) $[Pt[P(p\text{-tol})_3]_2]$ ⁺, 497 (31) $[Pt[P(p\text{-tol})_3]$ ⁺, 405 (44) $[Pt{P(p-tol)_2}]^+$.

trans-[Pt(p-tol){P(p-tol)₃}₂{(C=C)₇SiEt₃}] (PtC₁₄Si): A three-necked flask was charged with $PtC_{10}Si$ (0.150 g, 0.133 mmol) and acetone (20 mL), fitted with a gas dispersion tube and a condenser, and cooled to 0° C. Then wet $nBu_4N^+F^-$ (1.0m in THF/5 wt% H_2O , 0.100 mL, 0.100 mmol) was added with stirring. After 0.5 h (TLC showed no reactant remaining), Me₃SiCl (0.050 mL, 0.40 mmol) was added; after 10 min, $H(C=C)$ ₂SiEt₃ (0.437 g, 2.66 mmol) was added. A Schlenk flask was charged with CuCl (0.436 g, 4.42 mmol) and acetone (5 mL), and TMEDA (0.400 mL, 2.66 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. The blue supernatant was added to the three-necked flask. Then O₂ was bubbled through the three-necked flask with stirring. After 1.5 h, the solvent was removed by rotary evaporation. The residue was extracted first with hexane $(3 \times$ 30 mL) and then with toluene $(3 \times 40 \text{ mL})$. The extracts were passed in sequence through an alumina column $(2 \times 10 \text{ cm}, \text{ packed in hexane})$. The solvent was removed from toluene extracts by rotary evaporation and the residue was subjected to chromatography on a silica gel column $(3.5 \times$ 40 cm, packed in hexane, eluted with $15:85$ v/v CH₂Cl₂/hexane). The solvent was removed from the product-containing fraction by rotary evapo-

ration and oil pump vacuum to give **PtC**₁₄Si as a red solid (0.031 g, 0.026 mmol, 20%). DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{69}H_{64}P_2PtSi$: C 70.33, H 5.47; found: C 69.59, H 5.52; ¹H NMR (CDCl₃): δ = 7.29–7.26 (m, 12H; o to P), 7.02 (d, ³J(H,H) = 7.7 Hz, 12H; *m* to P), 6.25 (d, $\frac{3J(H,H)}{2}$ =7.8 Hz, 2H; *o* to Pt), 6.07 (*d*, $\frac{3J(H,H)}{2}$ = 7.7 Hz, 2H; m to Pt), 2.32 (s, 18H; CH₃), 1.94 (s, 3H; CH₃), 0.97 (t, ³J- $(H,H) = 7.9$ Hz, 9H; CH₂CH₃), 0.62 ppm (q, ³ $J(H,H) = 7.9$ Hz, 6H; CH₂CH₃); ¹³C{¹H} NMR (CDCl₃): $\delta = 149.2$ (t, ²J(C,P) = 9.7 Hz, *i* to Pt), 140.1 (s, p to P), 138.6 (s, o to Pt), 134.5 (virtual t, $^{2}J(C,P)$ = 6.0 Hz, o to P),^[20] 129.7 (s, p to Pt), 128.5 (virtual t, ${}^{3}J(C,\mathbf{P}) = 5.5$ Hz, m to P),^[20] 127.9 (s, *m* to Pt), 127.5 (virtual t, ¹J(C,P)=29.6 Hz, *i* to P),^[20] 124.6 (t, ²J- $(C,P) = 14.3$ Hz, PtC=C), 95.2 (s, PtC=C), 89.1 (s, C=CSi), 86.5 (s, C=CSi), 67.6, 66.3, 64.7, 63.6, 62.3, 61.6, 61.2, 60.1, 58.8, 55.3 (10 s, PtC=CC=CC= $CC=CC=CC=C)$, 21.4 (s, CH₃, p to P), 20.5 (s, CH₃, p to Pt), 7.3 (s, CH₂CH₃), 4.2 ppm (s, CH₂CH₃); ³¹P{¹H} NMR (CDCl₃): δ = 19.0 ppm (s, $1J(P,Pt) = 2891 \text{ Hz};$ ^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/ z (%): 1177 (1) $[PtC_{14}Si]^{+}$, 894 (34) $[Pt(p-tol)\{P(p-tol)\}^1_3]_2]^{+}$, 803 (100) $[Pt[P(p-tol)₃]$ ⁺), 497 (31) $[Pt[P(p-tol)₃]$ ⁺, 405 (44) $[Pt[P(p-tol)₂]$ ⁺.

trans,trans- $[(p\text{-tol})\{P(p\text{-tol})_3\}$, $Pt(C\equiv C)$, $Pt\{P(p\text{-tol})_3\}$, $(p\text{-tol})$] (PtC_6Pt)

Method A: A Schlenk flask was charged with PtC_6Si (0.100 g, 0.0924 mmol) and THF (3 mL). Then wet $nBu_4N^+F^-$ (1.0m in THF/5 wt% H₂O, 0.092 mL, 0.092 mmol) was added with stirring. After 0.5 h, the mixture was poured into a second Schlenk flask that had been charged with PtCl (0.214 g, 0.230 mmol), CuI (0.040 g, 0.22 mmol), and $HNEt₂$ (8 mL). The mixture was stirred for 65 h. The solvent was removed by rotary evaporation. The residue was extracted with toluene $(4 \times 25 \text{ mL})$. The combined extracts were passed through an alumina column $(2 \times$ 7 cm). The solvent was removed by rotary evaporation. The residue was suspended in hexane/EtOH (20 mL, 3:1 v/v), collected by filtration, and dried by oil pump vacuum to give $P_{0}P_{0}P_{1}$ as a yellow solid (0.096 g, 0.052 mmol, 56%).

Method B: A Schenk flask was charged with Me₃Si(C \equiv C)₃SiMe₃ (0.021 g, 0.10 mmol)^[28] and THF (3 mL), and cooled to -78° C (CO₂/acetone). Then wet $nBu_4N^+F^-$ (1.0 M in THF/5 wt% H₂O, 0.20 mL, 0.20 mmol) was added with stirring. After 0.5 h, the solution was added through a cannula to a Schlenk flask that had been charged with PtCl (0.223 g, 0.200 mmol), CuI (0.066 g, 0.35 mmol), and HNEt₂ (9 mL), and cooled to -45° C. After 2 h, the cold bath was allowed to warm. After 60 h, the solvent was removed by rotary evaporation. The residue was extracted with toluene $(3 \times 35 \text{ mL})$. The extracts were filtered through an alumina column $(2 \times$ 7 cm). The solvent was removed by rotary evaporation. The residue was suspended in EtOH (15 mL), collected by filtration, and dried by oil pump vacuum to give PtC_6Pt as a yellow solid (0.056 g, 0.030 mmol, 30%). DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{104}H_{98}P_4Pt_2$: C 67.09, H 5.31; found: C 66.78, H 5.61; ¹H NMR (CDCl₃): δ = 7.32–7.28 (m, 24H; o to P), 6.95 (d, ³J(H,H) = 8.3 Hz, 12H; m to P), 6.25 (d, $\rm^3 J(H,H)$ = 7.7 Hz, 4H; o to Pt), 5.97 (d, $\rm^3 J(H,H)$ = 7.7 Hz, 4H; m to Pt), 2.24 (s, 36H; CH₃), 1.90 ppm (s, 6H; CH₃); ¹³C{¹H} NMR (CDCl₃): $\delta = 151.4$ (t, ²J(C,P) = 10.2 Hz, *i* to Pt), 139.4 (s, *p* to P), 139.1 (s, *o* to Pt), 134.7 (virtual t, ²*J*(C,P) = 6.0 Hz, *o* to P),^[20] 128.8 (s, *p* to Pt), 128.4 (virtual t, ${}^{1}J(C,P) = 29.2$ Hz, *i* to P),^[20] 127.8 (virtual t, ${}^{3}J(C,P) =$ 5.5 Hz, *m* to P),^[20] 127.4 (s, *m* to Pt), 107.3 (t, ²J(C,P) = 15.3 Hz, PtC=C), 99.4 (s, PtC $\equiv C$), 60.5 (s, PtC $\equiv CC$), 21.3 (s, CH₃, p to P), 20.5 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃): $\delta = 19.2$ ppm (s, ¹J(P,Pt) = 2964 Hz);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 1860 (10) $[PtC_6Pt]^+, 894 (74) [Pt(p-tol){P(p-tol)}_3]_2]^+, 803 (100) [Pt{P(p-tol)}_3]_2]^+,$ 497 (34) $[Pt{P(p-tol)}_3]$ ⁺, 405 (44) $[Pt{P(p-tol)}_2]$ ⁺

trans,trans- $[(p\text{-tol})\{P(p\text{-tol})_3\} \cdot P$ t $(C\equiv C)_4P$ t $[P(p\text{-tol})_3\} \cdot (p\text{-tol})$] $(P₁C₈P$ t $)$: A three-necked flask was charged with **PtC₄H** (0.205 g, 0.217 mmol) and acetone (25 mL), and fitted with a gas dispersion tube and a condenser.^[52] A Schlenk flask was charged with CuCl (0.090 g, 0.91 mmol), and TMEDA (0.050 mL, 0.33 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then O_2 was bubbled through the three-necked flask with stirring. After about 5 min, the solution was heated to 40° C (oil bath) and the blue supernatant was added in portions. After 6 h, the solvent was removed by rotary evaporation. The residue was extracted with toluene $(4 \times 25 \text{ mL})$. The extracts were filtered through an alumina column $(2 \times 7 \text{ cm})$. The sol-

vent was removed by rotary evaporation. The residue was suspended in MeOH (20 mL), collected by filtration, and dried by oil pump vacuum to give PtC_8Pt as a yellow solid (0.151 g, 0.080 mmol, 74%). DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{106}H_{98}P_4Pt_2$: C 67.51, H 5.24; found: C 67.26, H 5.28; ¹H NMR (CDCl₃): δ = 7.31–7.26 (m, 24H; *o* to P), 6.98 (d, $\frac{3J(H,H)}{27.8 \text{ Hz}}$, 12H; *m* to P), 6.25 (d, $\frac{3J(H,H)}{27.8 \text{ Hz}}$, 4H; o to Pt), 6.00 (d, ³J(H,H)=7.7 Hz, 4H; m to Pt), 2.29 (s, 36H; CH₃), 1.91 ppm (s, 6H; CH₃); ¹³C{¹H} NMR (CDCl₃): δ =150.7 (t, ²J(C,P)= 10.2 Hz, *i* to Pt), 139.7 (s, *p* to P), 138.8 (s, *o* to Pt), 134.6 (virtual t, ²*J*- $(C,P)=6.0$ Hz, σ to P),^[20] 129.1 (s, p to Pt), 128.3 (virtual t, $^{3}J(C,P)=$ 5.5 Hz, *m* to P),^[20] 128.0 (virtual t, ¹J(C,P) = 29.6 Hz, *i* to P),^[20] 127.6 (s, *m* to Pt), 112.9 (t, $^2J(C,P)$ = 15.7 Hz, PtC=C), 97.6 (s, PtC=C), 63.8 (s, PtC= CC=C), 57.7 (s, PtC=CC=C), 21.4 (s, CH₃, p to P), 20.6 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃): $\delta = 19.0$ ppm (s, ¹J(P,Pt) = 2931 Hz);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 1860 (2) [**PtC₈Pt**]⁺, 894 (54), $[Pt(p-tol){P(p-tol)}_3]_2]$ ⁺, 803 (100) $[Pt[P(p-tol)]_3]_2]$ ⁺.

trans,trans-[(p-tol){P(p-tol)₃}₂Pt(C=C)₅Pt{P(p-tol)₃}₂(p-tol)] (PtC₁₀Pt): A Schlenk flask was charged with $PtC_{10}Si$ (0.092 g, 0.081 mmol) and THF (5 mL), and cooled to 0°C. Then wet $nBu_4N^+F^-$ (1.0m in THF/5 wt% H2O, 0.080 mL, 0.080 mmol) was added with stirring. After 0.5 h, the mixture was poured into a second Schlenk flask that had been charged with **PtCl** $(0.127 \text{ g}, 0.137 \text{ mmol})$, CuI $(0.020 \text{ g}, 0.11 \text{ mmol})$, and HNEt₂ (20 mL), and cooled to 0° C. The mixture was stirred. After 4.5 h, the cold bath was removed and the solvent was removed by oil pump vacuum. The residue was extracted with toluene $(4 \times 25 \text{ mL})$. The combined extracts were passed through an alumina column $(2 \times 7 \text{ cm})$. The solvent was removed by rotary evaporation. The residue was suspended in MeOH (10 mL), collected by filtration, and dried by oil pump vacuum to give $P{tC_{10}}P{t}$ as an orange solid (0.130 g, 0.140 mmol, 84%). DSC/ TGA data: Table 1; elemental analysis calcd (%) for $C_{118}H_{98}P_4Pt_2$: C 69.81, H 4.87; found: C 68.91, H 5.25; ¹H NMR (CDCl₃): δ =7.31-7.26 (m, 24H; o to P), 7.00 (d, $\frac{3J(H,H)}{27.7 \text{ Hz}}$, 24H; m to P), 6.27 (d, $\frac{3J-H}{27.7 \text{ Hz}}$ $(H,H) = 7.7$ Hz, 2H; o to Pt), 6.05 (d, $\frac{3J(H,H)}{2} = 7.7$ Hz, 2H; m to Pt), 2.31 (s, 36H; CH₃), 1.93 ppm (s, 6H; CH₃); ¹³C{¹H} NMR (CDCl₃): δ = 150.0 (t, $^2J(C,P) = 10.7$ Hz, *i* to Pt), 140.0 (s, *p* to P), 138.8 (s, *o* to Pt), 134.5 (virtual t, $^2J(C,\mathbf{P})=6.1$ Hz, o to P),^[20] 129.4 (s, p to Pt), 128.4 (virtual t, ${}^{3}J(C,\mathbb{P}) = 5.3$ Hz, *m* to P),^[20] 127.8 (virtual t, ${}^{1}J(C,\mathbb{P}) = 29.0$ Hz, *i* to P),^[20] 127.7 (s, *m* to Pt), 117.3 (t, ²*J*(C,P) = 15.3 Hz, PtC=C), 96.5 (s, PtC= C), 64.7, 61.6, 56.8 (3 s, PtC=CC=CC), 21.4 (s, CH₃, p to P), 20.5 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃): $\delta = 19.1$ ppm (s, ¹J(P,Pt) = 2911 Hz);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 1019 (2) $[PtC_{10}Pt]^{+}$, 894 (58) $[Pt(p-tol)[P(p-tol)_3]_2]^{+}$, 803 (100) $[Pt[P(p-tol)]_3]_2$ $_{[101]_3}]_2$]⁺.

trans,trans- $[(p\text{-tol})\{P(p\text{-tol})_3\}$ ₂Pt(C \equiv C)₆Pt $[P(p\text{-tol})_3]$ ₂ $(p\text{-tol})$] (PtC₁₂Pt)

Method A: A three-necked flask was charged with $P{tC₆H}$ (0.150 g, 0.155 mmol) and acetone (25 mL), and fitted with a gas dispersion tube and a condenser.^[52] A Schlenk flask was charged with CuCl $(0.050 g,$ 0.51 mmol) and acetone (20 mL), and TMEDA (0.030 mL, 0.20 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then O_2 was bubbled through the three-necked flask with stirring. After about 5 min, the blue supernatant was added in portions. After 1 h, the solvent was removed by rotary evaporation. The residue was extracted with toluene $(4 \times 25 \text{ mL})$. The extracts were filtered through an alumina column $(2 \times 7 \text{ cm})$. The solvent was removed by rotary evaporation. The residue was suspended in MeOH (15 mL), collected by filtration, and dried by oil pump vacuum to give $P{tC_{12}}P{t}$ as a bright orange powder (0.123 g, 0.064 mmol, 83%).

Method B: A three-necked flask was charged with PtC_6Si (0.216 g, 0.200 mmol) and acetone (40 mL), and fitted with a gas dispersion tube and a condenser.[52] A Schlenk flask was charged with CuCl (0.218 g, 0.222 mmol) and acetone (20 mL), and TMEDA (0.200 mL, 1.32 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then wet $nBu_4N^+F^-$ (1.0m in THF/5 wt% H_2O , 0.050 mL, 0.050 mmol) was added to the three-necked flask with stirring. After 0.5 h (TLC showed no reactant remaining), ClSiMe₃ (0.025 mL, 0.200 mmol) was added. After 10 min, O_2 was bubbled through the mixture with stirring. After about 5 min, the blue supernatant was added in portions. After 1.5 h, the solvent was removed by

A EUROPEAN JOURNAL

rotary evaporation. The residue was extracted with toluene $(4 \times 25 \text{ mL})$. The extract were filtered through an alumina column $(2 \times 7 \text{ cm})$. The solvent was removed by rotary evaporation. The residue was suspended in MeOH (15 mL), collected by filtration, and dried by oil pump vacuum to give $P{tC_{12}}P{t}$ as a bright orange powder (0.17 g, 0.088 mmol, 88%). DSC/ TGA data: Table 1; elemental analysis calcd (%) for $C_{110}H_{98}P_4Pt_2$: C 68.31, H 5.31; found: C 67.67, H 5.12; ¹H NMR (CDCl₃): δ = 7.32–7.27 (m, 24H; σ to P), 7.02 (d, $\frac{3J(H,H)}{2}$ = 7.7 Hz, 24H; m to P), 6.29 (d, $\frac{3J-H}{2}$ (H,H) = 7.8 Hz, 2H; o to Pt), 6.08 (d, $\frac{3J(H,H)}{3}$ = 7.7 Hz, 2H; m to Pt), 2.32 (s, 36H; CH₃), 1.95 ppm (s, 6H; CH₃); ¹³C{¹H} NMR (CDCl₃): δ = 149.7 (t, $^2J(C,P)$ = 10.7 Hz, *i* to Pt), 140.0 (s, *p* to P), 138.7 (s, *o* to Pt), 134.5 (virtual t, $^2J(C,\mathbf{P})=6.1$ Hz, o to P),^[20] 129.5 (s, p to Pt), 128.4 (virtual t, ${}^{3}J(C,\mathbf{P}) = 4.6$ Hz, *m* to P),^[20] 127.74 (s, *m* to Pt), 127.65 (virtual t, ¹J- $(C,\bar{P}) = 29.8 \text{ Hz}, i \text{ to } P$, $[20]$ 120.1 (t, $^{2}J(C,\bar{P}) = 14.5 \text{ Hz}, \text{ Pt} \equiv C$), 96.0 (s, PtC $\equiv C$), 65.9, 63.2, 60.5, 56.1 (4 s, PtC $\equiv CC \equiv CC \equiv C$), 21.0 (s, CH₃, p to P), 20.5 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃): δ = 19.0 ppm (s, ¹J- $(P,Pt) = 2908 \text{ Hz}$;^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 1934 (4) $[PtC_{12}Pt]^+$, 894 (64) $[Pt(p-tol)]{P(p-tol)}_3]_2]^+$, 803 (100) $[Pt{P(p-tol)}_3]_2]$ ⁺.

trans,trans- $[(p\text{-tol})\{P(p\text{-tol})_3\} _2P$ t $(C\equiv C)_8P$ t $[P(p\text{-tol})_3\} _2(p\text{-tol})]$ $(PtC_{16}Pt)$: A three-necked flask was charged with PtC_8Si (0.125 g, 0.113 mmol) and acetone (20 mL), fitted with a gas dispersion tube and a condenser, and cooled to 0° C. A Schlenk flask was charged with CuCl (0.218 g) , 0.222 mmol) and acetone (20 mL), and TMEDA (0.200 mL, 1.33 mmol) was added with stirring. After 0.5 h, stirring was halted, and a gravish solid separated from a blue supernatant. Then wet $nBu_4N^+F^-$ (1.0m in THF/5 wt% H₂O, 0.05 mL, 0.05 mmol) was added to the three-necked flask with stirring. After 0.5 h (TLC showed no reactant remaining), ClSiMe₃ (0.025 mL, 0.200 mmol) was added. After 10 min, O_2 was bubbled through the mixture with stirring. After about 5 min, the blue supernatant was added in portions. After 1.5 h, the solvent was removed by rotary evaporation at ambient temperature. The residue was subjected to chromatography on a silica gel column (2.5×25 cm, $35:65$ v/v CH₂Cl₂/ hexane). The solvent was removed from the product-containing fraction by rotary evaporation and oil pump vacuum to give PtC₁₆Pt as red solid (0.078 g, 0.039 mmol, 70%). DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{114}H_{98}P_4Pt_2$: C 69.08, H 4.98; found: C 69.09, H 5.31; ¹H NMR (CDCl₃): δ = 7.28–7.25 (m, 24H; *o* to P), 7.01 (d, ³*J*(H,H) = 7.7 Hz, 24H; *m* to P), 6.26 (d, ³*J*(H,H) = 7.7 Hz, 2H; *o* to Pt), 6.07 (d, ³*J*(H,H) = 7.7 Hz, 2H; *m* to Pt), 2.31 (s, 36H; CH₃), 1.94 ppm (s, 6H; CH₃); ¹³C{¹H} NMR (CDCl₃): $\delta = 149.3$ (t, ²J(C,P)=9.9 Hz, *i* to Pt), 140.1 (s, *p* to P), 138.6 (s, σ to Pt), 134.5 (virtual t, ²J(C,P)=6.1 Hz, σ to P),^[20] 129.7 (s, p to Pt), 128.4 (virtual t, ${}^{3}J(C,\mathbf{P}) = 4.8 \text{ Hz}$, m to P), $[20]$ 127.8 (s, m to Pt), 127.5 (virtual t, ${}^{1}J(C,\mathbf{P}) = 30.5 \text{ Hz}$, *i* to P),^[20] 123.3 (t, ${}^{2}J(C,\mathbf{P}) = 14.5 \text{ Hz}$, PtC=C), 95.5 (s, PtC=C), 67.1, 65.3, 63.2, 61.3, 59.5, 55.7 (6 s, PtC=CC= $CC\equiv CC\equiv C$), 21.4 (s, CH₃, p to P), 20.5 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃): $\delta = 19.7$ ppm (s, ¹J(P,Pt) = 2903 Hz);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 1105 (<1) $[PtC_{16}Pt]^+$, 894 (30) $[Pt(p-tol)](P(p-tol)_{3}]_{2}]^{+}$, 803 (100) $[Pt(P(p-tol)_{3}]_{2}]^{+}$.

trans,trans- $[(p\text{-tol})\{P(p\text{-tol})_3\} _2P$ t $(C\equiv C)_{10}P$ t $[P(p\text{-tol})_3\} _2(p\text{-tol})]$ (PtC₂₀Pt): A three-necked flask was charged with $P{tC_{10}}$ Si (0.056 g, 0.050 mmol) and acetone (20 mL), fitted with a gas dispersion tube and a condenser, and cooled to -25° C. A Schlenk flask was charged with CuCl (0.200 g, 2.02 mmol) and acetone (20 mL), and TMEDA (0.200 mL, 1.33 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then wet $nBu_4N^+F^-$ (1.0m in THF/5 wt% H_2O , 0.05 mL, 0.05 mmol) was added to the three-necked flask with stirring. After 20 min (TLC showed no reactant remaining), ClSiMe₂ $(0.025 \text{ mL} + 0.200 \text{ mmol})$ was added. After 10 min, Ω_2 was bubbled through the mixture with stirring and the blue supernatant was added in portions. After 1.5 h, the solvent was removed by rotary evaporation. The residue was subjected to chromatography on a silica gel column (2.5×25 cm, $35:65$ v/v CH₂Cl₂/hexane). The solvent was removed from the product-containing fraction by rotary evaporation (ice bath) and oil pump vacuum to give $PfC_{20}Pf$ as a red solid (0.037 g, 0.018 mmol, 72%). DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{118}H_{98}P_4Pt_2$: C 69.81, H 4.87; found: C 68.91, H 5.25; ¹H NMR (CDCl₃): δ = 7.28–7.23 (m, 24H; *o* to P), 7.02 (d, ³*J*(H,H) = 7.7 Hz, 24H; *m* to P), 6.25 (d, $3J(H,H) = 7.8$ Hz, 2H; o to Pt), 6.07 (d, $3J(H,H) = 7.7$ Hz, 2H; m

to Pt), 2.31 (s, 36H; CH₃), 1.93 ppm (s, 6H; CH₃); ¹³C{¹H} NMR (CDCl₃): $\delta = 149.1$ (t, ²J(C,P) = 10.7 Hz, *i* to Pt), 139.9 (s, *p* to P), 138.5 (s, *o* to Pt), 134.3 (virtual t, $^2J(C,P) = 6.4$ Hz, *o* to P),^[20] 129.6 (s, *p* to Pt), 128.3 (virtual t, ${}^{3}J(C,\mathbf{P})$ = 5.5 Hz, m to P),^[20] 127.7 (s, m to Pt), 127.4 (virtual t, ${}^{1}J(C,\mathbb{P}) = 29.4$ Hz, *i* to P),^[20] 123.1 (t, ${}^{2}J(C,\mathbb{P}) = 14.5$ Hz, PtC=C), 95.2 (s, PtC \equiv C), 67.7, 66.4, 64.6, 63.2, 62.0, 60.6, 59.1, 55.6 (8 s, PtC \equiv C \subset \equiv $CC=CC=CC)$, 21.5 (s, CH₃, p to P), 20.7 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃): $\delta = 19.0$ ppm (s, ¹J(P,Pt) = 2889 Hz);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 2029 (<1) $[PtC_{20}Pt]^+, 894$ (60) $[Pt(p-tol)]P(p-tol)_{3}]^{+}$, 803 (100) $[Pt[P(p-tol)_{3}]_{2}]^{+}$.

trans,trans- $[(p\text{-tol})\{P(p\text{-tol})_3\}$ ₂Pt(C=C)₁₂Pt{P(p-tol)₃}₂(p-tol)] (PtC₂₄Pt): A three-necked flask was charged with $P_tC₁, Si$ (0.154 g, 0.133 mmol) and acetone (10 mL), fitted with a gas dispersion tube and a condenser, $[52]$ and cooled to 10° C. A Schlenk flask was charged with CuCl (0.440 g, 4.44 mmol) and acetone (5 mL), and TMEDA (0.800 mL, 5.36 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then $O₂$ was bubbled through the three-necked flask with stirring, and the blue supernatant was added in portions. After 7 h, the solvent was removed by rotary evaporation (ice bath). The residue was subjected to chromatography on a silica gel column at 10°C (3×25 cm, 25:75 v/v CH₂Cl₂/hexane). The solvent was removed from the reactant- and product-containing fractions by rotary evaporation (ice bath) and oil pump vacuum to give $PtC_{12}Si$ as an orange solid (0.060, 0.052 mmol, 38%) and PtC₂₄Pt as a deep red solid (0.030 g, 0.014 mmol, 36%). When samples were heated in capillaries, there were no visually well-defined changes (melting, etc.) below 350 °C. DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{122}H_{98}P_4Pt_2$: C 70.51, H 4.75; found: C 69.93, H 5.04; ¹H NMR (CDCl₃, 10 °C): δ = 7.32–7.21 (m, 24H; *o* to P), 6.97 (d, $3J(H,H) = 7.7$ Hz, 24H; *m* to P), 6.23 (d, $3J(H,H) =$ 7.7 Hz, 2H; o to Pt), 6.07 (d, $^{3}J(H,H) = 7.7$ Hz, 2H; m to Pt), 2.20 (s, 36H; CH₃), 1.88 ppm (s, 6H; CH₃); ¹³C{¹H} NMR (CDCl₃, 10^oC): δ = 149.0 ppm (s, i to Pt), 140.2 (s, p to P), 138.5 (s, o to Pt), 134.4 (virtual t, $^{2}J(C,\mathbf{P}) = 6.2 \text{ Hz}, \space o \text{ to } \mathbf{P}$), $^{[20]}$ 129.8 (s, p to Pt), 128.0 (virtual t, $^{3}J(C,\mathbf{P}) =$ 5.5 Hz, *m* to P),^[20] 127.8 (s, *m* to Pt), 127.2 (virtual t, ¹J(C,P) = 29.6 Hz, *i* to P),^[20] 125.6 (s, PtC=C), 95.0 (s, PtC=C), 67.7, 66.6, 65.1, 64.0, 63.1, 62.2, 61.3, 60.1, 58.8, 55.3 (10 s, PtC=CC=CC=CC=CC=CC=C), 21.5 (s, CH_3 , p to P), 20.5 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃, 10^oC): $\delta = 19.7$ ppm (s, $\frac{1}{I}(P,Pt) = 2886 \text{ Hz}$);^[50] IR data: Table 2; UV/Vis data: Table 4; MS:^[51] m/z (%): 2078 (<1) $[PtC_{24}Pt]^+$, 894 (52) $[Pt(p-tol)]P(p-tol)$ tola_{3}^{2} +, 803 (100) [Pt[P(p-tol)]_{3} ⁺.

trans,trans- $[(p\text{-tol})\{P(p\text{-tol})_3\}_2P$ t $(C\equiv C)_{14}P$ t $[P(p\text{-tol})_3\}_2(p\text{-tol})]$ (Pt $C_{28}P$ t): A three-necked flask was charged with $P₁₄Si$ (0.50 g, 0.42 mmol) and acetone (15 mL), fitted with a gas dispersion tube and a condenser, $[52]$ and cooled to 0° C. A Schlenk flask was charged with CuCl (0.440 g, 4.44 mmol) and acetone (5 mL), and TMEDA (0.800 mL, 5.36 mmol) was added with stirring. After 0.5 h, stirring was halted, and a grayish solid separated from a blue supernatant. Then $O₂$ was bubbled through the three-necked flask with stirring, and the blue supernatant was added in portions. After 42 h, acetone (10 mL, 0° C) was added. After another 16 h, the solvent was removed by rotary evaporation (ice bath). The residue was subjected to chromatography on a silica gel column $(3 \times 25 \text{ cm})$. 25:75 v/v CH_2Cl_2 /hexane). The solvent was removed from the productcontaining fraction by rotary evaporation (ice bath) and oil pump vacuum to give $PtC_{28}Pt$ as a deep red solid (0.023 g, 0.021 mmol, 51%). When samples were heated in capillaries, there were no visually well-defined changes (melting, etc.) below 350 °C. DSC/TGA data: Table 1; elemental analysis calcd (%) for $C_{126}H_{98}P_4Pt_2$: C 71.18, H 4.65; found: C 69.82, H 4.94; ¹H NMR (CDCl₃, 0°C): δ = 7.30–7.26 (m, 24H; o to P), 7.07 (d, $\frac{3J(H,H)}{2}$ = 7.6 Hz, 24H; m to P), 6.25 (d, $\frac{3J(H,H)}{2}$ = 7.7 Hz, 2H; o to Pt), 6.07 (d, $\frac{3J(H,H)}{27.5 \text{ Hz}}$, 2H; m to Pt), 2.31 (s, 36H; CH₃), 1.98 ppm (s, 6H; CH₃); ¹³C{¹H} NMR (CDCl₃, 0°C): δ = 148.9 (t, ²J- $(C, P) = 10.2$ Hz, *i* to Pt), 140.1 (s, *p* to P), 138.5 (s, *o* to Pt), 134.4 (virtual t, $^{2}J(C,\mathbf{P})$ = 6.2 Hz, o to P),^[20] 129.8 (s, p to Pt), 128.0 (virtual t, $^{3}J(C,\mathbf{P})$ = 5.5 Hz, *m* to P),^[20] 127.8 (s, *m* to Pt), 127.2 (virtual t, ¹J(C,P) = 30.4 Hz, *i* to P),^[20] 126.0 (s, PtC \equiv C), 95.0 (s, PtC \equiv C), 67.9, 66.9, 65.4, 64.5, 63.7, 63.1, 62.5, 61.8, 61.0, 60.0, 58.8, 55.3 (12 s, PtC=CC=CC=CC=CC=CC=CC= $CC\equiv C$), 21.4 (s, CH₃, p to P), 20.6 ppm (s, CH₃, p to Pt); ³¹P{¹H} NMR (CDCl₃, 0 °C): $\delta = 19.7$ ppm (s, ¹J(P,Pt) = 2885 Hz);^[50] IR data: Table 2;

Polyynes **FULL PAPER**

UV/Vis data: Table 4; MS:^[51] m/z (%): 2125 (<1) $[PtC_{28}Pt]^+, 894$ (43) $[Pt(p-tol) {P(p-tol)_3}_2]^+$, 803 (100) $[Pt(P(p-tol)_3)_2]^+$.

 $H(C=C)_{2}SiEt_{3}$ ^[24] A three-necked flask was fitted with a condenser and a dropping funnel, charged with a solution of $H(C= C)_{2}H$ (5.38 g, 107 mmol) in THF (50 mL),^[21] and cooled to -78 °C. Then *n*BuLi (1.6 M in hexane, 75.0 mL, 120 mmol) was added dropwise over 20 min with stirring. After 1 h, the cold bath was removed and $CISiEt₃$ (18.0 g, 119 mmol) was added. After 3 h, cold saturated aqueous NH4Cl (50 mL) was added. The mixture was extracted with pentane $(3 \times 100 \text{ mL})$. The combined extracts were dried (Na_2SO_4) . The solvent was removed by rotary evaporation at ambient temperature. The residue was distilled by oil pump vacuum to give $H(C=C)$ ₂SiEt₃ (33–38°C, 2.3 × 10⁻² mbar) as a colorless liquid (8.09 g, 49.2 mmol, 46%) and $Et_3Si(C\equiv C)_2SiEt_3$ (137– 143 °C, 2.3×10^{-2} mbar) as a pale yellow liquid (11.9 g, 42.7 mmol, 40%).^[24a] ¹H NMR (CDCl₃): δ = 1.97 (s, 1H; HC≡), 0.90 (t, ³J(H,H) = 7.8 Hz, 9H; CH₃), 0.56 ppm (q, ${}^{3}J(H,H) = 7.8$ Hz, 6H; CH₂); ¹³C{¹H} NMR (CDCl₃): $\delta = 88.7$ (s, C \equiv CSi), 83.2 (s, C \equiv CSi), 68.8 (s, HC \equiv C), 66.3 (s, HC \equiv C), 7.7 (s, CH₃), 4.4 ppm (s, CH₂); IR (liquid film): \tilde{v} = 3308 (m, $v_{\equiv C-H}$), 2189/2034 cm⁻¹ (w/m, $v_{C\equiv C}$).

Cyclic voltammetry: A BAS CV-50W Voltammetric Analyzer (Cell Stand C3) with the program CV-50W (version 2.0) was employed. Cells were fitted with Pt working and counter electrodes, and a Ag wire pseudoreference electrode. All sample solutions (CH₂Cl₂) were $5-10\times 10^{-3}$ M in substrate and 0.1 M in $nBu_4N^+BF_4^-$ (crystallized from ethanol/hexane and dried by oil pump vacuum), and were prepared under nitrogen. Ferrocene was subsequently added (0.46 V), and calibration voltammograms recorded. The ambient laboratory temperature was 22.5 ± 1 °C.

Crystallography

Procedure for PtC₆Si: A solution of **PtC₆Si** in ClCH₂CH₂Cl was layered with MeOH and kept in a refrigerator (-24°C) . After two days, the light yellow prisms were used for data collection as outlined in Table 5. Cell parameters were obtained from 10 frames using a $10[°]$ scan and refined with 11 851 reflections. Lorentz, polarization, and absorption corrections[53] were applied. The space group was determined from systematic absences and subsequent least-squares refinement. The structure was solved by direct methods. The parameters were refined with all data by full-matrix least-squares on \overline{F}^2 using SHELXL-97.^[54] Non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were fixed in idealized positions using a riding model. Scattering factors were taken from literature.[55]

Procedure for PtC $_8$ Si: Yellow prisms of PtC $_8$ Si were grown from layered $CH_2Cl_2/MeOH$ (-24 °C, 2 d) and analyzed as described for **PtC₆Si** (cell parameters from 10 frames using a 10° scan; refined with 12866 reflections). The structure was solved and refined as with $P_{t}C_{s}Si$. The unit cell contained four molecules of $CH₂Cl₂$.

Procedure for PtC₁₀Si: Yellow prisms of PtC₁₀Si were grown and analyzed as described for **PtC**₈Si (cell parameters from 10 frames using a 10[°] scan; refined with 9258 reflections). The structure was solved and refined as with $PtC₆Si$.

Procedure for PtC₆Pt: A solution of PtC₆Pt in benzene was taken to apparent dryness by oil pump vacuum, and the residue was dissolved in toluene and layered with MeOH. After one week (room temperature), the light yellow prisms were analyzed as described for $P_{0}S_i$ (cell parameters from 10 frames using a 10° scan; refined with 10505 reflections). The structure was solved and refined as with PtC_6Si . The structure exhibited an inversion center at the midpoint of the C3-C3a bond. The unit cell contained two molecules of benzene.

Procedure for PtC₁₀Pt: A solution of PtC₁₀Pt in benzene was layered with EtOH. After two days (room temperature), the orange prisms were analyzed as described for P_fCGs (cell parameters from 10 frames using a 10° scan; refined with 10097 reflections). The structure was solved and refined as with $PtC₆Si$, and exhibited an inversion center at the midpoint of the C5-C5a bond.

Procedure for Pt'C₈Pt': Acetone vapor was allowed to diffuse into a solution of $Pf'C_8Pf'$ (the primes denote PPh₃ in place of the $P(p-tol)_3$ ligands) in 1,2-difluorobenzene.^[15a] After two weeks (room temperature), the thin pale yellow plates were used for data collection as outlined in Table 5.

Cell parameters were obtained from 10 frames using a 10° scan. The space group was determined from systematic absences and least-squares refinement. Lorentz, polarization, and absorption corrections were applied.^[56] The structure was solved by standard heavy atom techniques and refined with SHELXTL. Non-hydrogen atoms were refined with anisotropic thermal parameters. The structure exhibited an inversion center at the midpoint of the C4-C4a bond. The unit cell contained four disordered molecules of acetone and a half molecule of 1,2-difluorobenzene. Hydrogen atom positions were fixed in idealized positions using a riding model. Scattering factors and Δf and $\Delta f'$ values were taken from literature.[57, 58]

Procedure for PtC₁₂Pt: A solution of PtC₁₂Pt in benzene was layered with EtOH. After one week (room temperature), pale yellow prisms were analyzed as described for $Pf'C_sPf'$ (cell parameters from 10 frames using a 10° scan). The structure was solved and refined similarly to $Pt'C_sPt'$, except for the software employed (SIR 97),^[59] and exhibited an inversion center at the midpoint of the C6-C6a bond. The unit cell contained two molecules of benzene.

CCDC-606021 (PtC.Si), CCDC-606020 (PtC.Si·(CH₂Cl₂)), CCDC-606019 $(PtC₁₀Si)$, CCDC-606018 $(PtC₆Pt·(benzene)$ ₂), CCDC-124681 $(PtC₈Pt·)$ $(\text{acetone})_4 \cdot (1,2\text{-difluorobenzene})_{0.5})$, CCDC-606022 (PtC₁₀Pt), and CCDC-124885 (PtC₁₂Pt·(benzene)₂) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data_request/cif.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, GL 300/1–3) and US NSF (CHE-9732605) for support, and Dr. Atta Arif for the crystal structures of $Pt'C_8Pt'$ and $PtC_{12}Pt.$ ^[15a]

- [1] Acetylene Chemistry (Eds.: F. Diederich, P. J. Stang, R. Tykwinski) Wiley-VCH, Weinheim, 2004, and earlier volumes in this series.
- M. I. Bruce, P. J. Low, Adv. Organomet. Chem. 2004, 50, 179.
- [3] F. Paul, C. Lapinte in Unusual Structures and Physical Properties in Organometallic Chemistry (Eds.: M. Gielen, R. Willem, B. Wrackmeyer) Wiley, New York, 2002, pp. 220 – 291.
- [4] S. Szafert, J. A. Gladysz, Chem. Rev. 2003, 103, 4175.
- [5] N. J. Long, C. K. Williams, Angew. Chem. 2003, 115, 2690; Angew. Chem. Int. Ed. 2003, 42, 2586.
- [6] Representative papers since the review in reference [3]: a) M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton, A. H. White, Organometallics 2003, 22, 3184; b) H. Jiao, K. Costuas, J. A. Gladysz, J.-F. Halet, M. Guillemot, L. Toupet, F. Paul, C. J. Lapinte, J. Am. Chem. Soc. 2003, 125, 9511; c) S. Kheradmandan, K. Venkatesan, O. Blacque, H. W. Schmalle, H. Berke, Chem. Eur. J. 2004, 10, 4872, and earlier work cited therein.
- [7] a) Y. Tobe, T. Wakabayashi in Acetylene Chemistry (Eds.: F. Diederich, P. J. Stang, R. Tykwinski) Wiley-VCH, Weinheim, 2004, Chapter 9; b) Polyynes: Synthesis, Properties and Applications, (Ed.: F. Cataldo) Taylor & Francis, New York, 2005.
- [8] T. Bartik, W. Weng, J. A. Ramsden, S. Szafert, S. B. Falloon, A. M. Arif, J. A. Gladysz, J. Am. Chem. Soc. 1998, 120, 11 071.
- [9] a) FeC_1 ₂Fe and FeC_6 Fe complexes: A. Sakurai, M. Akita, Y. Morooka, Organometallics 1999, 18, 3241; b) FeC_8Fe and FeC_4Fe complexes: M. Akita, M.-C. Chung, A. Sakurai, S. Sugimoto, M. Terada, M. Tanaka, Y. Moro-oka, Organometallics 1997, 16, 4882.
- [10] a) $RuC_{14}Ru$ complex: A. B. Antonova, M. I. Bruce, B. G. Ellis, M. Gaudio, P. A. Humphrey, M. Jevric, G. Melino, B. K. Nicholson, G. J. Perkins, B. W. Skelton, B. Stapleton, A. H. White, N. N. Zaitseva, Chem. Commun. 2004, 960; b) $RuC_{12}Ru$ complex: S. Rigaut, J. Perruchon, L. Le Pichon, D. Touchard, P. H. Dixneuf, J. Organomet. Chem. 2003, 670, 37; c) $RuC_{12}Ru$ complex: H. Qi, A. Gupta, B. C. Noll, G. L. Snider, Y. Lu, C. Lent, T. P. Fehlner, J. Am. Chem. Soc. 2005, 127, 15218; d) RuC_8Ru and RuC_6Ru complexes: M. I. Bruce,

A EUROPEAN JOURNAL

B. D. Kelly, B. W. Skelton, A. H. White, J. Organomet. Chem. 2000, 604 , 150, and references therein; e) $RuC₄Ru$ complex: M. I. Bruce, P. J. Low, K. Costuas, J.-F. Halet, S. P. Best, G. A. Heath, J. Am. Chem. Soc. 2000, 122, 1949; f) see also M. I. Bruce, B. G. Ellis, P. J. Low, B. W. Skelton, A. H. White, Organometallics 2003, 22, 3184.

- [11] a) $\text{Re}C_{20}\text{Re}$, $\text{Re}C_{16}\text{Re}$, $\text{Re}C_{12}\text{Re}$, $\text{Re}C_{10}\text{Re}$, $\text{Re}C_8\text{Re}$, and $\text{Re}C_6\text{Re}$ complexes: R. Dembinski, T. Bartik, B. Bartik, M. Jaeger, J. A. Gladysz, J. Am. Chem. Soc. 2000, 122, 810; b) ReC₄Re complexes: M. Brady, W. Weng, Y. Zhou, J. W. Seyler, A. J. Amoroso, A. M. Arif, M. Böhme, G. Frenking, J. A. Gladysz, J. Am. Chem. Soc. 1997, 119, 775; c) W. E. Meyer, A. J. Amoroso, C. R. Horn, M. Jaeger, J. A. Gladysz, Organometallics 2001, 20, 1115; d) C. R. Horn, J. M. Martín-Alvarez, J. A. Gladysz, Organometallics 2002, 21, 5386; e) C. R. Horn, J. A. Gladysz, Eur. J. Inorg. Chem. 2003, 9, 2211.
- [12] $RhC₁₂Rh complex: G.-Y. Xu, G. Zou, Y.-H. Ni, M. C. DeRosa, R. J.$ Crutchley, T. Ren, J. Am. Chem. Soc. 2003, 125, 10057.
- [13] PtC₁₆Pt, PtC₁₂Pt, PtC₈Pt, PtC₆Pt, and PtC₄Pt complexes: W. Mohr, J. Stahl, F. Hampel, J. A. Gladysz, Chem. Eur. J. 2003, 9, 3324.
- [14] PtC₁₂Pt, PtC₈Pt, and PtC₆Pt complexes: a) J. Stahl, J. C. Bohling, E. B. Bauer, T. B. Peters, W. Mohr, J. M. Martín-Alvarez, F. Hampel, J. A. Gladysz, Angew. Chem. 2002, 114, 1951; Angew. Chem. Int. Ed. 2002, 41, 1871; b) G. R. Owen, J. Stahl, F. Hampel, J. A. Gladysz, Organometallics 2004, 23, 5889; c) L. de Quadras, F. Hampel, J. A. Gladysz, Dalton Trans. 2006, 2929.
- [15] a) T. B. Peters, J. C. Bohling, A. M. Arif, J. A. Gladysz, Organometallics 1999, 18, 3261; b) Q. Zheng, J. A. Gladysz, J. Am. Chem. Soc. 2005, 127, 10 508.
- [16] a) K. Sonogashira, Y. Fujikura, N. Toyoshima, S. Takahashi, N. Hagihara, *J. Organomet. Chem.* **1978**, *145*, 101; b) M. I. Bruce, M. Ke, P. J. Low, Chem. Commun. 1996, 2405; c) S. M. AlQaisi, K. J. Galat, M. Chai, D. G. Ray III, P. L. Rinaldi, C. A. Tessier, W. J. Youngs, J. Am. Chem. Soc. 1998, 120, 12 149.
- [17] H. C. Clark, L. E. Manzer, *J. Organomet. Chem.* **1973**, 59, 411.
- [18] Previous characterization via an alternative synthesis: C. Eaborn, K. J. Odell, A. Pidcock, J. Chem. Soc. Dalton Trans. 1978, 357.
- [19] Previous characterization via an alternative synthesis: J. Ertl, D. Grafl, H. A. Brune, Z. Naturforsch. B 1982, 37, 1082.
- [20] W. H. Hersh, J. Chem. Educ. 1997, 74, 1485.
- [21] a) L. Brandsma, H. D. Verkruijsse, Synth. Commun. 1991, 21, 657; b) L. Brandsma, H. D. Verkruijsse, Synthesis of Acetylenes, Allenes and Cumulenes, Elsevier, New York, 1981, p. 136 and p. 146. The HC=CC=CH concentration is calculated from the mass increase of the THF. This compound is reported to be explosive.
- [22] P. Siemsen, R. C. Livingston, F. Diederich, Angew. Chem. 2000, 112, 2740; Angew. Chem. Int. Ed. 2000, 39, 2632; .
- [23] R. Eastmond, T. R. Johnson, D. R. M. Walton, J. Organomet. Chem. 1973, 50, 87.
- [24] a) R. Eastmond, T. R. Johnson, D. R. M. Walton, Tetrahedron 1972, 28, 4601; b) For an alternative synthesis, see reference [11a].
- [25] For additional details, see Q. Zheng, Doctoral Thesis, Universität Erlangen-Nürnberg, 2005.
- [26] J. C. Bohling, T. B. Peters, A. M. Arif, F. Hampel, J. A. Gladysz, in Coordination Chemistry at the Turn of the Century (Eds.: G. Ondrejovic, A. Sirota), Slovak Technical University Press, Bratislava, Slovokia, 1999, pp. 47-52.
- [27] For a conceptually related approach to Eglinton couplings of terminal alkynes, see M. M. Haley, M. L. Bell, S. C. Brand, D. B. Kimball, J. J. Pak, W. B. Wan, Tetrahedron Lett. 97, 38, 7483.
- [28] Y. Rubin, S. S. Lin, C. B. Knobler, J. Anthony, A. M. Boldi, F. Diederich, J. Am. Chem. Soc. 1991, 113, 6943.
- [29] W. Weng, T. Bartik, M. Brady, B. Bartik, J. A. Ramsden, A. M. Arif, J. A. Gladysz, J. Am. Chem. Soc. 1995, 117, 11 922.
- [30] For additional details, see A. Frisch, Diplom Thesis, Universität Erlangen-Nürnberg, 1999.
- [31] DSC and TGA data were treated as recommended by H. K. Cammenga, M. Epple, Angew. Chem. 1995, 107, 1284; Angew. Chem. Int. Ed. Engl. 1995, 34, 1171. The T_e values best represent the temperature of the phase transition or exotherm. DSC measurements were

generally not continued above the initial mass loss temperature (TGA).

- [32] F. Zhuravlev, J. A. Gladysz, Chem. Eur. J. 2004, 10, 6510.
- [33] The analogous pentafluorophenyl complexes exhibit no reductions prior to the CH₂Cl₂-induced limit.^[13] Therefore the more electron rich complexes $P_{t}C_{x}P_{t}$ are presumed to be similarly unreactive.
- [34] a) T. Luu, E. Elliot, A. D. Slepkov, S. Eisler, R. McDonald, F. A. Hegmann, R. R. Tykwinski, Org. Lett. 2005, 7, 51; b) S. Eisler, A. D. Slepkov, E. Elliot, T. Luu, R. McDonald, F. A. Hegmann, R. R. Tykwinski, J. Am. Chem. Soc. 2005, 127, 2666.
- [35] L. Blanco, H. E. Helson, M. Hirthammer, H. Mestdagh, S. Spyroudis, K. P. C. Vollhardt, C. Angew. Chem. 1987, 99, 1276; Angew. Chem. Int. Ed. Engl. 1987, 26, 1246; .
- [36] D. W. Rogers, A. A. Zavitsas, N. Matsunaga, J. Phys. Chem. A 2005, 109, 9169 (see Supporting Information).
- [37] For a lead reference to an extensive literature, see J. Xiao, M. Yang, J. W. Lauher, F. W. Fowler, Angew. Chem. 2000, 112, 2216; Angew. Chem. Int. Ed. 2000, 39, 2132; .
- [38] a) E. R. H. Jones, H. H. Lee, M. C. Whiting, J. Chem. Soc. 1960, 3483; b) T. R. Johnson, D. R. M. Walton, Tetrahedron 1972, 28, 5221.
- [39] T. Gibtner, F. Hampel, J.-P. Gisselbrecht, A. Hirsch, Chem. Eur. J. 2002, 8, 408.
- [40] a) A. Klein, S. Hasenzahl, W. Kaim, J. Fiedler, Organometallics 1998, 17, 3532; b) M. Younus, A. Köhler, S. Cron, N. Chawdhury, M. R. A. Al-Mandhary, M. S. Khan, J. Lewis, N. J. Long, R. H. Friend, P. R. Raithby, Angew. Chem. 1998, 110, 3180; Angew. Chem. Int. Ed. 1998, 37, 3036; .
- [41] L̂. Horný, N. D. K. Petraco, C. Pak, H. F. Schaefer III, J. Am. Chem. Soc. 2002, 124, 5861.
- [42] D. P. Arnold, M. A. Bennett, *Inorg. Chem.* **1984**, 23, 2117.
- [43] a) G. Schermann, T. Grösser, F. Hampel, A. Hirsch, Chem. Eur. J. 1997, 3, 1105; b) C. Klinger, O. Vostrowsky, A. Hirsch, Eur. J. Org. Chem. 2006, 1508.
- [44] A. D. Slepkov, F. A. Hegmann, S. Eisler, E. Elliot, R. R. Tykwinski, J. Chem. Phys. 2004, 120, 6807.
- [45] The increase in intensities of these bands (e.g., from $\varepsilon = 361\,000$ to $402000 \text{ m}^{-1} \text{ cm}^{-1}$ for **PtC₁₂Pt** vs. **PtC₂₈Pt**) is not as great as might have been expected from previous studies.^[11,13a] However, a substantial increase in breadth and hence band area is evident in Figure 1.
- [46] H. H. Jaffé, M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, Wiley, New York, 1962; Table 11.7 and accompanying discussion.
- [47] H. Meier, Angew. Chem. 2005, 117, 2536; Angew. Chem. Int. Ed. 2005, 44, 2482.
- [48] W. Mohr, T. B. Peters, J. C. Bohling, F. Hampel, A. M. Arif, J. A. Gladysz, Comptes Rendus Chemie 2002, 5, 111.
- [49] a) G. R. Owen, F. Hampel, J. A. Gladysz, *Organometallics* 2004, 23, 5893; b) Q. Zheng, F. Hampel, J. A. Gladysz, Organometallics 2004, 23, 5896.
- [50] This coupling represents a satellite (d; $^{195}Pt = 33.8\%$), and is not reflected in the peak multiplicity given.
- [51] Most intense peak of isotope envelope.
- [52] In order to avoid the aspiration/volatilization of acetone, an efficient condenser is required.
- [53] a) "Collect" data collection software, B. V. Nonius, 1998; b) "Scalepack" data processing software: Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307.
- [54] G. M. Sheldrick, SHELX-97, Program for refinement of crystal structures, University of Göttingen, Göttingen (Germany), 1997.
- [55] D. T. Cromer, J. T. Waber, in International Tables for X-ray Crystallography (Eds.: J. A. Ibers, W. C. Hamilton), Kynoch, Birmingham (England), 1974.
- [56] G. M. Sheldrick, "SADABS: Area-Detector Absorption Correction", Siemens Industrial Automation, Inc., Madison, WI, 1996.
- [57] E. N. Maslen, A. G. Fox, M. A. O'Keefe, In International Tables for Crystallography: Mathematical, Physical and Chemical Tables, Vol. C (Ed.: A. J. C. Wilson), Kluwer, Dordrecht (The Netherlands), 1992, Chapter 6, pp. 476 – 516.

6504 <www.chemeurj.org> © 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Eur. J. 2006, 12, 6486 – 6505

Polyynes **FULL PAPER**

- [58] D. C. Creagh, W. J. McAuley, In International Tables for Crystallography: Mathematical, Physical and Chemical Tables, Vol. C (Ed.: A. J. C. Wilson), Kluwer, Dordrecht (The Netherlands), 1992, Chapter 4, pp. 206 – 222.
- [59] A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliteni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115.

Received: May 2, 2006 Published online: July 28, 2006